Help - Firmware for...
Clear all

Help - Firmware for Ender 5 with skr mini e3 v2,0, tft35, bltouch 3 and BTT filament runout sensor  

Page 1 / 2

Active Member
Joined: 1 month ago
Posts: 16
25/10/2020 10:48 am  

Ok I finally got a password to log in WOOHOO

Now, I am trying to install the BTT SKR Mini E3 V2.0, TFT35 Touch screen, BLTouch 3 and the BTT filament runout sensor and I am having tons of problems. I was hoping someone might have the config files they would share so I can at least compare them to mine to see what I am doing wrong.

I have done this for the silent board upgrade I did and then again for the bltouch (went with th3d firmware for this one) and when doing the new board I can get it to work with the board, screen and bltouch but when I add in the filament sensor it just goes back to square one it seems. I have followed guides and checked to make sure the filament sensor items were uncommented and set properly but when I give it to the printer it just doesnt work.

Anyway. If someone has the firmware for the Ender 5 with these options I would really appreciate taking a look at it. I am at my wits end with trying to now use vscode instead of arduino plus this just not working for me....i need to take a break lol


New Member
Joined: 1 month ago
Posts: 4
25/10/2020 10:40 pm  

You can post your configuration files for us, and use the code tags by copy/pasting; then highlight the text and choose the <> "Code" option in the editing menu.

Like this

New Member
Joined: 1 month ago
Posts: 4
26/10/2020 12:58 am  

We don't have one for all of those options, but I have enabled a filament sensor, SKR Mini, and Linear Advance enabled... We will look at your configuration if you post it, or put a link to it.

Active Member
Joined: 1 month ago
Posts: 16
26/10/2020 10:01 am  

Sweet - Although it is 2487 lines of code in just the configuration.h .... Let me see if I can upload them somewhere. I will post back when I get them up!! Thanx!

Active Member
Joined: 1 month ago
Posts: 16
26/10/2020 11:05 am  

Ok - <a title="Dropbox Files" href=" removed link " target="true"> removed link  - see if that works. Should have the config and the advanced and a zip file with both in. Hope I did it right.

This is the latest one I did with everything (supposedly) enabled. I have not tried it on the printer yet, busy at the moment, but I did compile it and it says it is fine.

Maybe this 2,834,564,765,876 try is the one that will work who knows lol

This post was modified 1 month ago by KnightRid

Member Admin
Joined: 2 years ago
Posts: 47
26/10/2020 4:57 pm  
Posted by: @knightrid

Ok - removed link " target="true"> removed link  - see if that works. Should have the config and the advanced and a zip file with both in. Hope I did it right.

This is the latest one I did with everything (supposedly) enabled. I have not tried it on the printer yet, busy at the moment, but I did compile it and it says it is fine.

Maybe this 2,834,564,765,876 try is the one that will work who knows lol

Your link didn't work, try again. It doesn't matter how long as the code tags make it scrollable inside the post. Also; I recommend to use pastebin or something instead of dropbox for a configuration file but that's fine.

I will have a look as soon as you rectify the link.

This post was modified 1 month ago by Print3D

Business IT Solutions -
Plastic Process Engineering

Active Member
Joined: 1 month ago
Posts: 16
26/10/2020 5:35 pm  


* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware []
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <>.
#pragma once

#define CONFIG_EXAMPLES_DIR "Creality/Ender-5/BigTreeTech SKR Mini E3 2.0"

* Configuration.h
* Basic settings such as:
* - Type of electronics
* - Type of temperature sensor
* - Printer geometry
* - Endstop configuration
* - LCD controller
* - Extra features
* Advanced settings can be found in Configuration_adv.h

//============================= Getting Started =============================

* Here are some standard links for getting your machine calibrated:

//============================= DELTA Printer ===============================
// For a Delta printer start with one of the configuration files in the
// config/examples/delta directory and customize for your machine.

//============================= SCARA Printer ===============================
// For a SCARA printer start with the configuration files in
// config/examples/SCARA and customize for your machine.

// @section info

// Author info of this build printed to the host during boot and M115
#define STRING_CONFIG_H_AUTHOR "(uaraven, Ender-5-SKR-mini-E3-V2.0)" // Who made the changes.
//#define CUSTOM_VERSION_FILE Version.h // Path from the root directory (no quotes)

* Marlin allows you to add a custom boot image for Graphical LCDs.
* With this option Marlin will first show your custom screen followed
* by the standard Marlin logo with version number and web URL.
* We encourage you to take advantage of this new feature and we also
* respectfully request that you retain the unmodified Marlin boot screen.

// Show the Marlin bootscreen on startup. ** ENABLE FOR PRODUCTION **

// Show the bitmap in Marlin/_Bootscreen.h on startup.

// Show the bitmap in Marlin/_Statusscreen.h on the status screen.

// @section machine

* Select the serial port on the board to use for communication with the host.
* This allows the connection of wireless adapters (for instance) to non-default port pins.
* Serial port -1 is the USB emulated serial port, if available.
* Note: The first serial port (-1 or 0) will always be used by the Arduino bootloader.
* :[-1, 0, 1, 2, 3, 4, 5, 6, 7]
#define SERIAL_PORT 2

* Select a secondary serial port on the board to use for communication with the host.
* Currently Ethernet (-2) is only supported on Teensy 4.1 boards.
* :[-2, -1, 0, 1, 2, 3, 4, 5, 6, 7]
#define SERIAL_PORT_2 -1

* This setting determines the communication speed of the printer.
* 250000 works in most cases, but you might try a lower speed if
* you commonly experience drop-outs during host printing.
* You may try up to 1000000 to speed up SD file transfer.
* :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000]
#define BAUDRATE 115200

// Enable the Bluetooth serial interface on AT90USB devices
//#define BLUETOOTH

// Choose the name from boards.h that matches your setup

// Name displayed in the LCD "Ready" message and Info menu
#define CUSTOM_MACHINE_NAME "Ender-5"

// Printer's unique ID, used by some programs to differentiate between machines.
// Choose your own or use a service like
//#define MACHINE_UUID "00000000-0000-0000-0000-000000000000"

// @section extruder

// This defines the number of extruders
// :[0, 1, 2, 3, 4, 5, 6, 7, 8]
#define EXTRUDERS 1

// Generally expected filament diameter (1.75, 2.85, 3.0, ...). Used for Volumetric, Filament Width Sensor, etc.

// For Cyclops or any "multi-extruder" that shares a single nozzle.

// Save and restore temperature and fan speed on tool-change.
// Set standby for the unselected tool with M104/106/109 T...

* Průša MK2 Single Nozzle Multi-Material Multiplexer, and variants.
* This device allows one stepper driver on a control board to drive
* two to eight stepper motors, one at a time, in a manner suitable
* for extruders.
* This option only allows the multiplexer to switch on tool-change.
* Additional options to configure custom E moves are pending.
// Override the default DIO selector pins here, if needed.
// Some pins files may provide defaults for these pins.
//#define E_MUX0_PIN 40 // Always Required
//#define E_MUX1_PIN 42 // Needed for 3 to 8 inputs
//#define E_MUX2_PIN 44 // Needed for 5 to 8 inputs

* Průša Multi-Material Unit v2
* Requires NOZZLE_PARK_FEATURE to park print head in case MMU unit fails.
* Requires EXTRUDERS = 5
* For additional configuration see Configuration_adv.h
//#define PRUSA_MMU2

// A dual extruder that uses a single stepper motor
#define SWITCHING_EXTRUDER_SERVO_ANGLES { 0, 90 } // Angles for E0, E1[, E2, E3]

// A dual-nozzle that uses a servomotor to raise/lower one (or both) of the nozzles
//#define SWITCHING_NOZZLE_E1_SERVO_NR 1 // If two servos are used, the index of the second
#define SWITCHING_NOZZLE_SERVO_ANGLES { 0, 90 } // Angles for E0, E1 (single servo) or lowered/raised (dual servo)

* Two separate X-carriages with extruders that connect to a moving part
* via a solenoid docking mechanism. Requires SOL1_PIN and SOL2_PIN.

* Two separate X-carriages with extruders that connect to a moving part
* via a magnetic docking mechanism using movements and no solenoid
* project :
* movements :


#define PARKING_EXTRUDER_PARKING_X { -78, 184 } // X positions for parking the extruders
#define PARKING_EXTRUDER_GRAB_DISTANCE 1 // (mm) Distance to move beyond the parking point to grab the extruder
//#define MANUAL_SOLENOID_CONTROL // Manual control of docking solenoids with M380 S / M381


#define PARKING_EXTRUDER_SOLENOIDS_INVERT // If enabled, the solenoid is NOT magnetized with applied voltage
#define PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE LOW // LOW or HIGH pin signal energizes the coil
#define PARKING_EXTRUDER_SOLENOIDS_DELAY 250 // (ms) Delay for magnetic field. No delay if 0 or not defined.
//#define MANUAL_SOLENOID_CONTROL // Manual control of docking solenoids with M380 S / M381


#define MPE_FAST_SPEED 9000 // (mm/min) Speed for travel before last distance point
#define MPE_SLOW_SPEED 4500 // (mm/min) Speed for last distance travel to park and couple
#define MPE_TRAVEL_DISTANCE 10 // (mm) Last distance point
#define MPE_COMPENSATION 0 // Offset Compensation -1 , 0 , 1 (multiplier) only for coupling



* Switching Toolhead
* Support for swappable and dockable toolheads, such as
* the E3D Tool Changer. Toolheads are locked with a servo.

* Magnetic Switching Toolhead
* Support swappable and dockable toolheads with a magnetic
* docking mechanism using movement and no servo.

* Electromagnetic Switching Toolhead
* Parking for CoreXY / HBot kinematics.
* Toolheads are parked at one edge and held with an electromagnet.
* Supports more than 2 Toolheads. See

#define SWITCHING_TOOLHEAD_Y_POS 235 // (mm) Y position of the toolhead dock
#define SWITCHING_TOOLHEAD_Y_SECURITY 10 // (mm) Security distance Y axis
#define SWITCHING_TOOLHEAD_Y_CLEAR 60 // (mm) Minimum distance from dock for unobstructed X axis
#define SWITCHING_TOOLHEAD_X_POS { 215, 0 } // (mm) X positions for parking the extruders
#define SWITCHING_TOOLHEAD_SERVO_NR 2 // Index of the servo connector
#define SWITCHING_TOOLHEAD_SERVO_ANGLES { 0, 180 } // (degrees) Angles for Lock, Unlock
#define SWITCHING_TOOLHEAD_Y_RELEASE 5 // (mm) Security distance Y axis
#define SWITCHING_TOOLHEAD_X_SECURITY { 90, 150 } // (mm) Security distance X axis (T0,T1)
//#define PRIME_BEFORE_REMOVE // Prime the nozzle before release from the dock
#define SWITCHING_TOOLHEAD_PRIME_MM 20 // (mm) Extruder prime length
#define SWITCHING_TOOLHEAD_RETRACT_MM 10 // (mm) Retract after priming length
#define SWITCHING_TOOLHEAD_PRIME_FEEDRATE 300 // (mm/min) Extruder prime feedrate
#define SWITCHING_TOOLHEAD_RETRACT_FEEDRATE 2400 // (mm/min) Extruder retract feedrate
#define SWITCHING_TOOLHEAD_Z_HOP 2 // (mm) Z raise for switching

* "Mixing Extruder"
* - Adds G-codes M163 and M164 to set and "commit" the current mix factors.
* - Extends the stepping routines to move multiple steppers in proportion to the mix.
* - Optional support for Repetier Firmware's 'M164 S<index>' supporting virtual tools.
* - This implementation supports up to two mixing extruders.
* - Enable DIRECT_MIXING_IN_G1 for M165 and mixing in G1 (from Pia Taubert's reference implementation).
#define MIXING_STEPPERS 2 // Number of steppers in your mixing extruder
#define MIXING_VIRTUAL_TOOLS 16 // Use the Virtual Tool method with M163 and M164
//#define DIRECT_MIXING_IN_G1 // Allow ABCDHI mix factors in G1 movement commands
//#define GRADIENT_MIX // Support for gradient mixing with M166 and LCD
//#define GRADIENT_VTOOL // Add M166 T to use a V-tool index as a Gradient alias

// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
//#define HOTEND_OFFSET_X { 0.0, 20.00 } // (mm) relative X-offset for each nozzle
//#define HOTEND_OFFSET_Y { 0.0, 5.00 } // (mm) relative Y-offset for each nozzle
//#define HOTEND_OFFSET_Z { 0.0, 0.00 } // (mm) relative Z-offset for each nozzle

// @section machine

* Power Supply Control
* Enable and connect the power supply to the PS_ON_PIN.
* Specify whether the power supply is active HIGH or active LOW.
//#define PSU_CONTROL
//#define PSU_NAME "Power Supply"

#define PSU_ACTIVE_STATE HIGH // Set 'LOW' for ATX, 'HIGH' for X-Box

//#define PSU_DEFAULT_OFF // Keep power off until enabled directly with M80
//#define PSU_POWERUP_DELAY 250 // (ms) Delay for the PSU to warm up to full power

//#define PSU_POWERUP_GCODE "M355 S1" // G-code to run after power-on (e.g., case light on)
//#define PSU_POWEROFF_GCODE "M355 S0" // G-code to run before power-off (e.g., case light off)

//#define AUTO_POWER_CONTROL // Enable automatic control of the PS_ON pin
#define AUTO_POWER_FANS // Turn on PSU if fans need power
//#define AUTO_POWER_E_TEMP 50 // (°C) Turn on PSU over this temperature
//#define AUTO_POWER_CHAMBER_TEMP 30 // (°C) Turn on PSU over this temperature
#define POWER_TIMEOUT 30

//============================= Thermal Settings ============================
// @section temperature

* --NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
* Temperature sensors available:
* -5 : PT100 / PT1000 with MAX31865 (only for sensors 0-1)
* -3 : thermocouple with MAX31855 (only for sensors 0-1)
* -2 : thermocouple with MAX6675 (only for sensors 0-1)
* -4 : thermocouple with AD8495
* -1 : thermocouple with AD595
* 0 : not used
* 1 : 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
* 331 : (3.3V scaled thermistor 1 table for MEGA)
* 332 : (3.3V scaled thermistor 1 table for DUE)
* 2 : 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
* 202 : 200k thermistor - Copymaster 3D
* 3 : Mendel-parts thermistor (4.7k pullup)
* 4 : 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
* 5 : 100K thermistor - ATC Semitec 104GT-2/104NT-4-R025H42G (Used in ParCan, J-Head, and E3D) (4.7k pullup)
* 501 : 100K Zonestar (Tronxy X3A) Thermistor
* 502 : 100K Zonestar Thermistor used by hot bed in Zonestar Průša P802M
* 512 : 100k RPW-Ultra hotend thermistor (4.7k pullup)
* 6 : 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
* 7 : 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
* 71 : 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
* 8 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
* 9 : 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
* 10 : 100k RS thermistor 198-961 (4.7k pullup)
* 11 : 100k beta 3950 1% thermistor (Used in Keenovo AC silicone mats and most Wanhao i3 machines) (4.7k pullup)
* 12 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
* 13 : 100k Hisens 3950 1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE"
* 15 : 100k thermistor calibration for JGAurora A5 hotend
* 18 : ATC Semitec 204GT-2 (4.7k pullup) Dagoma.Fr - MKS_Base_DKU001327
* 20 : Pt100 with circuit in the Ultimainboard V2.x with 5v excitation (AVR)
* 21 : Pt100 with circuit in the Ultimainboard V2.x with 3.3v excitation (STM32 \ LPC176x....)
* 22 : 100k (hotend) with 4.7k pullup to 3.3V and 220R to analog input (as in GTM32 Pro vB)
* 23 : 100k (bed) with 4.7k pullup to 3.3v and 220R to analog input (as in GTM32 Pro vB)
* 30 : Kis3d Silicone heating mat 200W/300W with 6mm precision cast plate (EN AW 5083) NTC100K / B3950 (4.7k pullup)
* 201 : Pt100 with circuit in Overlord, similar to Ultimainboard V2.x
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 61 : 100k Formbot / Vivedino 3950 350C thermistor 4.7k pullup
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 67 : 450C thermistor from SliceEngineering
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad with NTC 100K MGB18-104F39050L32 thermistor
* 99 : 100k thermistor with a 10K pull-up resistor (found on some Wanhao i3 machines)
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
* 51 : 100k thermistor - EPCOS (1k pullup)
* 52 : 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
* 55 : 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
* 1047 : Pt1000 with 4k7 pullup (E3D)
* 1010 : Pt1000 with 1k pullup (non standard)
* 147 : Pt100 with 4k7 pullup
* 110 : Pt100 with 1k pullup (non standard)
* 1000 : Custom - Specify parameters in Configuration_adv.h
* Use these for Testing or Development purposes. NEVER for production machine.
* 998 : Dummy Table that ALWAYS reads 25°C or the temperature defined below.
* 999 : Dummy Table that ALWAYS reads 100°C or the temperature defined below.
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_4 0
#define TEMP_SENSOR_5 0
#define TEMP_SENSOR_6 0
#define TEMP_SENSOR_7 0

// Dummy thermistor constant temperature readings, for use with 998 and 999

// Resistor values when using a MAX31865 (sensor -5)
// Sensor value is typically 100 (PT100) or 1000 (PT1000)
// Calibration value is typically 430 ohm for AdaFruit PT100 modules and 4300 ohm for AdaFruit PT1000 modules.
//#define MAX31865_SENSOR_OHMS 100
//#define MAX31865_CALIBRATION_OHMS 430

// Use temp sensor 1 as a redundant sensor with sensor 0. If the readings
// from the two sensors differ too much the print will be aborted.

#define TEMP_RESIDENCY_TIME 10 // (seconds) Time to wait for hotend to "settle" in M109
#define TEMP_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target

#define TEMP_BED_RESIDENCY_TIME 10 // (seconds) Time to wait for bed to "settle" in M190
#define TEMP_BED_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_BED_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target

// Below this temperature the heater will be switched off
// because it probably indicates a broken thermistor wire.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define HEATER_4_MINTEMP 5
#define HEATER_5_MINTEMP 5
#define HEATER_6_MINTEMP 5
#define HEATER_7_MINTEMP 5
#define BED_MINTEMP 5

// Above this temperature the heater will be switched off.
// This can protect components from overheating, but NOT from shorts and failures.
// (Use MINTEMP for thermistor short/failure protection.)
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define HEATER_4_MAXTEMP 275
#define HEATER_5_MAXTEMP 275
#define HEATER_6_MAXTEMP 275
#define HEATER_7_MAXTEMP 275
#define BED_MAXTEMP 125

//============================= PID Settings ================================
// PID Tuning Guide here:

// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // Limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX BANG_MAX // Limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#define PID_K1 0.95 // Smoothing factor within any PID loop

//#define PID_EDIT_MENU // Add PID editing to the "Advanced Settings" menu. (~700 bytes of PROGMEM)
//#define PID_AUTOTUNE_MENU // Add PID auto-tuning to the "Advanced Settings" menu. (~250 bytes of PROGMEM)
//#define PID_PARAMS_PER_HOTEND // Uses separate PID parameters for each extruder (useful for mismatched extruders)
// Set/get with gcode: M301 E[extruder number, 0-2]

// Creality Ender-5
// Specify between 1 and HOTENDS values per array.
// If fewer than EXTRUDER values are provided, the last element will be repeated.
#define DEFAULT_Kp_LIST { 21.73, 21.73 }
#define DEFAULT_Ki_LIST { 1.54, 1.54 }
#define DEFAULT_Kd_LIST { 76.55, 76.55 }
#define DEFAULT_Kp 21.73
#define DEFAULT_Ki 1.54
#define DEFAULT_Kd 76.55
#endif // PIDTEMP

//====================== PID > Bed Temperature Control ======================

* PID Bed Heating
* If this option is enabled set PID constants below.
* If this option is disabled, bang-bang will be used and BED_LIMIT_SWITCHING will enable hysteresis.
* The PID frequency will be the same as the extruder PWM.
* If PID_dT is the default, and correct for the hardware/configuration, that means 7.689Hz,
* which is fine for driving a square wave into a resistive load and does not significantly
* impact FET heating. This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W
* heater. If your configuration is significantly different than this and you don't understand
* the issues involved, don't use bed PID until someone else verifies that your hardware works.


* Max Bed Power
* Applies to all forms of bed control (PID, bang-bang, and bang-bang with hysteresis).
* When set to any value below 255, enables a form of PWM to the bed that acts like a divider
* so don't use it unless you are OK with PWM on your bed. (See the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current

//#define MIN_BED_POWER 0
//#define PID_BED_DEBUG // Sends debug data to the serial port.

#define DEFAULT_bedKp 50.71
#define DEFAULT_bedKi 9.88
#define DEFAULT_bedKd 173.43

// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED

//#define PID_DEBUG // Sends debug data to the serial port. Use 'M303 D' to toggle activation.
//#define PID_OPENLOOP // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.

// @section extruder

* Prevent extrusion if the temperature is below EXTRUDE_MINTEMP.
* Add M302 to set the minimum extrusion temperature and/or turn
* cold extrusion prevention on and off.

* Prevent a single extrusion longer than EXTRUDE_MAXLENGTH.
* Note: For Bowden Extruders make this large enough to allow load/unload.

//======================== Thermal Runaway Protection =======================

* Thermal Protection provides additional protection to your printer from damage
* and fire. Marlin always includes safe min and max temperature ranges which
* protect against a broken or disconnected thermistor wire.
* The issue: If a thermistor falls out, it will report the much lower
* temperature of the air in the room, and the the firmware will keep
* the heater on.
* If you get "Thermal Runaway" or "Heating failed" errors the
* details can be tuned in Configuration_adv.h

#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
#define THERMAL_PROTECTION_CHAMBER // Enable thermal protection for the heated chamber

//============================= Mechanical Settings =========================

// @section machine

// Enable one of the options below for CoreXY, CoreXZ, or CoreYZ kinematics,
// either in the usual order or reversed
//#define COREXY
//#define COREXZ
//#define COREYZ
//#define COREYX
//#define COREZX
//#define COREZY
//#define MARKFORGED_XY // MarkForged. See,504042

//============================== Endstop Settings ===========================

// @section homing

// Specify here all the endstop connectors that are connected to any endstop or probe.
// Almost all printers will be using one per axis. Probes will use one or more of the
// extra connectors. Leave undefined any used for non-endstop and non-probe purposes.
//#define USE_XMIN_PLUG
//#define USE_YMIN_PLUG
//#define USE_ZMAX_PLUG

// Enable pullup for all endstops to prevent a floating state
// Disable ENDSTOPPULLUPS to set pullups individually

// Enable pulldown for all endstops to prevent a floating state
// Disable ENDSTOPPULLDOWNS to set pulldowns individually

// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).
#define X_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Y_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Z_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define X_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Y_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Z_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Z_MIN_PROBE_ENDSTOP_INVERTING false // Set to true to invert the logic of the probe.

* Stepper Drivers
* These settings allow Marlin to tune stepper driver timing and enable advanced options for
* stepper drivers that support them. You may also override timing options in Configuration_adv.h.
* A4988 is assumed for unspecified drivers.
* Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
#define X_DRIVER_TYPE TMC2209
#define Y_DRIVER_TYPE TMC2209
#define Z_DRIVER_TYPE TMC2209
//#define X2_DRIVER_TYPE A4988
//#define Y2_DRIVER_TYPE A4988
//#define Z2_DRIVER_TYPE A4988
//#define Z3_DRIVER_TYPE A4988
//#define Z4_DRIVER_TYPE A4988
#define E0_DRIVER_TYPE TMC2209
//#define E1_DRIVER_TYPE A4988
//#define E2_DRIVER_TYPE A4988
//#define E3_DRIVER_TYPE A4988
//#define E4_DRIVER_TYPE A4988
//#define E5_DRIVER_TYPE A4988
//#define E6_DRIVER_TYPE A4988
//#define E7_DRIVER_TYPE A4988

// Enable this feature if all enabled endstop pins are interrupt-capable.
// This will remove the need to poll the interrupt pins, saving many CPU cycles.

* Endstop Noise Threshold
* Enable if your probe or endstops falsely trigger due to noise.
* - Higher values may affect repeatability or accuracy of some bed probes.
* - To fix noise install a 100nF ceramic capacitor in parallel with the switch.
* - This feature is not required for common micro-switches mounted on PCBs
* based on the Makerbot design, which already have the 100nF capacitor.
* :[2,3,4,5,6,7]

// Check for stuck or disconnected endstops during homing moves.

//============================== Movement Settings ============================
// @section motion

* Default Settings
* These settings can be reset by M502
* Note that if EEPROM is enabled, saved values will override these.

* With this option each E stepper can have its own factors for the
* following movement settings. If fewer factors are given than the
* total number of extruders, the last value applies to the rest.

* Default Axis Steps Per Unit (steps/mm)
* Override with M92
* X, Y, Z, E0 [, E1[, E2...]]
#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 800, 93 }

* Default Max Feed Rate (mm/s)
* Override with M203
* X, Y, Z, E0 [, E1[, E2...]]
#define DEFAULT_MAX_FEEDRATE { 500, 500, 5, 25 }

//#define LIMITED_MAX_FR_EDITING // Limit edit via M203 or LCD to DEFAULT_MAX_FEEDRATE * 2
#define MAX_FEEDRATE_EDIT_VALUES { 600, 600, 10, 50 } // ...or, set your own edit limits

* Default Max Acceleration (change/s) change = mm/s
* (Maximum start speed for accelerated moves)
* Override with M201
* X, Y, Z, E0 [, E1[, E2...]]
#define DEFAULT_MAX_ACCELERATION { 500, 500, 100, 5000 }

#define MAX_ACCEL_EDIT_VALUES { 6000, 6000, 200, 20000 } // ...or, set your own edit limits

* Default Acceleration (change/s) change = mm/s
* Override with M204
* M204 P Acceleration
* M204 R Retract Acceleration
* M204 T Travel Acceleration
#define DEFAULT_ACCELERATION 500 // X, Y, Z and E acceleration for printing moves
#define DEFAULT_RETRACT_ACCELERATION 500 // E acceleration for retracts
#define DEFAULT_TRAVEL_ACCELERATION 500 // X, Y, Z acceleration for travel (non printing) moves

* Default Jerk limits (mm/s)
* Override with M205 X Y Z E
* "Jerk" specifies the minimum speed change that requires acceleration.
* When changing speed and direction, if the difference is less than the
* value set here, it may happen instantaneously.
//#define CLASSIC_JERK
#define DEFAULT_XJERK 10.0
#define DEFAULT_YJERK 10.0
#define DEFAULT_ZJERK 0.3

//#define TRAVEL_EXTRA_XYJERK 0.0 // Additional jerk allowance for all travel moves

//#define LIMITED_JERK_EDITING // Limit edit via M205 or LCD to DEFAULT_aJERK * 2
#define MAX_JERK_EDIT_VALUES { 20, 20, 0.6, 10 } // ...or, set your own edit limits

#define DEFAULT_EJERK 5.0 // May be used by Linear Advance

* Junction Deviation Factor
* See:
#define JUNCTION_DEVIATION_MM 0.08 // (mm) Distance from real junction edge
#define JD_HANDLE_SMALL_SEGMENTS // Use curvature estimation instead of just the junction angle
// for small segments (< 1mm) with large junction angles (> 135°).

* S-Curve Acceleration
* This option eliminates vibration during printing by fitting a Bézier
* curve to move acceleration, producing much smoother direction changes.
* See

//============================= Z Probe Options =============================
// @section probes

// See

* Enable this option for a probe connected to the Z-MIN pin.
* The probe replaces the Z-MIN endstop and is used for Z homing.
* (Automatically enables USE_PROBE_FOR_Z_HOMING.)

// Force the use of the probe for Z-axis homing

* Define this pin if the probe is not connected to Z_MIN_PIN.
* If not defined the default pin for the selected MOTHERBOARD
* will be used. Most of the time the default is what you want.
* - The simplest option is to use a free endstop connector.
* - Use 5V for powered (usually inductive) sensors.
* - RAMPS 1.3/1.4 boards may use the 5V, GND, and Aux4->D32 pin:
* - For simple switches connect...
* - normally-closed switches to GND and D32.
* - normally-open switches to 5V and D32.
//#define Z_MIN_PROBE_PIN 32 // Pin 32 is the RAMPS default

* Probe Type
* Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc.
* Activate one of these to use Auto Bed Leveling below.

* The "Manual Probe" provides a means to do "Auto" Bed Leveling without a probe.
* Use G29 repeatedly, adjusting the Z height at each point with movement commands
* or (with LCD_BED_LEVELING) the LCD controller.
//#define MANUAL_PROBE_START_Z 0.2

* A Fix-Mounted Probe either doesn't deploy or needs manual deployment.
* (e.g., an inductive probe or a nozzle-based probe-switch.)

* Use the nozzle as the probe, as with a conductive
* nozzle system or a piezo-electric smart effector.

* Z Servo Probe, such as an endstop switch on a rotating arm.
//#define Z_PROBE_SERVO_NR 0 // Defaults to SERVO 0 connector.
//#define Z_SERVO_ANGLES { 70, 0 } // Z Servo Deploy and Stow angles

* The BLTouch probe uses a Hall effect sensor and emulates a servo.
#define BLTOUCH

* Pressure sensor with a BLTouch-like interface

* Touch-MI Probe by
* This probe is deployed and activated by moving the X-axis to a magnet at the edge of the bed.
* By default, the magnet is assumed to be on the left and activated by a home. If the magnet is
* on the right, enable and set TOUCH_MI_DEPLOY_XPOS to the deploy position.
* and a minimum Z_HOMING_HEIGHT of 10.
//#define TOUCH_MI_PROBE
#define TOUCH_MI_RETRACT_Z 0.5 // Height at which the probe retracts
//#define TOUCH_MI_DEPLOY_XPOS (X_MAX_BED + 2) // For a magnet on the right side of the bed
//#define TOUCH_MI_MANUAL_DEPLOY // For manual deploy (LCD menu)

// A probe that is deployed and stowed with a solenoid pin (SOL1_PIN)

// A sled-mounted probe like those designed by Charles Bell.
//#define Z_PROBE_SLED
//#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.

// A probe deployed by moving the x-axis, such as the Wilson II's rack-and-pinion probe designed by Marty Rice.

// Duet Smart Effector (for delta printers) -
// When the pin is defined you can use M672 to set/reset the probe sensivity.
#define SMART_EFFECTOR_MOD_PIN -1 // Connect a GPIO pin to the Smart Effector MOD pin

* Use StallGuard2 to probe the bed with the nozzle.
* Requires stallGuard-capable Trinamic stepper drivers.
* CAUTION: This can damage machines with Z lead screws.
* Take extreme care when setting up this feature.

// For Z_PROBE_ALLEN_KEY see the Delta example configurations.

* Nozzle-to-Probe offsets { X, Y, Z }
* - Use a caliper or ruler to measure the distance from the tip of
* the Nozzle to the center-point of the Probe in the X and Y axes.
* - For the Z offset use your best known value and adjust at runtime.
* - Probe Offsets can be tuned at runtime with 'M851', LCD menus, babystepping, etc.
* Assuming the typical work area orientation:
* - Probe to RIGHT of the Nozzle has a Positive X offset
* - Probe to LEFT of the Nozzle has a Negative X offset
* - Probe in BACK of the Nozzle has a Positive Y offset
* - Probe in FRONT of the Nozzle has a Negative Y offset
* Some examples:
* #define NOZZLE_TO_PROBE_OFFSET { 10, 10, -1 } // Example "1"
* #define NOZZLE_TO_PROBE_OFFSET {-10, 5, -1 } // Example "2"
* #define NOZZLE_TO_PROBE_OFFSET { 5, -5, -1 } // Example "3"
* #define NOZZLE_TO_PROBE_OFFSET {-15,-10, -1 } // Example "4"
* +-- BACK ---+
* | [+] |
* L | 1 | R <-- Example "1" (right+, back+)
* E | 2 | I <-- Example "2" ( left-, back+)
* F |[-] N [+]| G <-- Nozzle
* T | 3 | H <-- Example "3" (right+, front-)
* | 4 | T <-- Example "4" ( left-, front-)
* | [-] |
* O-- FRONT --+
#define NOZZLE_TO_PROBE_OFFSET { -44, -16, 0 }

// Most probes should stay away from the edges of the bed, but
// with NOZZLE_AS_PROBE this can be negative for a wider probing area.

// X and Y axis travel speed (mm/min) between probes
#define XY_PROBE_SPEED (133*60)

// Feedrate (mm/min) for the first approach when double-probing (MULTIPLE_PROBING == 2)

// Feedrate (mm/min) for the "accurate" probe of each point

* Multiple Probing
* You may get improved results by probing 2 or more times.
* With EXTRA_PROBING the more atypical reading(s) will be disregarded.
* A total of 2 does fast/slow probes with a weighted average.
* A total of 3 or more adds more slow probes, taking the average.
//#define EXTRA_PROBING 1

* Z probes require clearance when deploying, stowing, and moving between
* probe points to avoid hitting the bed and other hardware.
* Servo-mounted probes require extra space for the arm to rotate.
* Inductive probes need space to keep from triggering early.
* Use these settings to specify the distance (mm) to raise the probe (or
* lower the bed). The values set here apply over and above any (negative)
* probe Z Offset set with NOZZLE_TO_PROBE_OFFSET, M851, or the LCD.
* Only integer values >= 1 are valid here.
* Example: `M851 Z-5` with a CLEARANCE of 4 => 9mm from bed to nozzle.
* But: `M851 Z+1` with a CLEARANCE of 2 => 2mm from bed to nozzle.
#define Z_CLEARANCE_DEPLOY_PROBE 10 // Z Clearance for Deploy/Stow
#define Z_CLEARANCE_BETWEEN_PROBES 5 // Z Clearance between probe points
#define Z_CLEARANCE_MULTI_PROBE 5 // Z Clearance between multiple probes
//#define Z_AFTER_PROBING 5 // Z position after probing is done

#define Z_PROBE_LOW_POINT -2 // Farthest distance below the trigger-point to go before stopping

// For M851 give a range for adjusting the Z probe offset

// Enable the M48 repeatability test to test probe accuracy

// Before deploy/stow pause for user confirmation
//#define PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED // For Manual Deploy Allenkey Probe

* Enable one or more of the following if probing seems unreliable.
* Heaters and/or fans can be disabled during probing to minimize electrical
* noise. A delay can also be added to allow noise and vibration to settle.
* These options are most useful for the BLTouch probe, but may also improve
* readings with inductive probes and piezo sensors.
//#define PROBING_HEATERS_OFF // Turn heaters off when probing
//#define WAIT_FOR_BED_HEATER // Wait for bed to heat back up between probes (to improve accuracy)
//#define PROBING_FANS_OFF // Turn fans off when probing
//#define PROBING_STEPPERS_OFF // Turn steppers off (unless needed to hold position) when probing
//#define DELAY_BEFORE_PROBING 200 // (ms) To prevent vibrations from triggering piezo sensors

// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
// :{ 0:'Low', 1:'High' }
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders

// Disable axis steppers immediately when they're not being stepped.
// WARNING: When motors turn off there is a chance of losing position accuracy!
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false

// Turn off the display blinking that warns about possible accuracy reduction

// @section extruder

#define DISABLE_E false // Disable the extruder when not stepping
#define DISABLE_INACTIVE_EXTRUDER // Keep only the active extruder enabled

// @section machine

// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR true
#define INVERT_Y_DIR true
#define INVERT_Z_DIR true

// @section extruder

// For direct drive extruder v9 set to true, for geared extruder set to false.
#define INVERT_E0_DIR true
#define INVERT_E1_DIR false
#define INVERT_E2_DIR false
#define INVERT_E3_DIR false
#define INVERT_E4_DIR false
#define INVERT_E5_DIR false
#define INVERT_E6_DIR false
#define INVERT_E7_DIR false

// @section homing

//#define NO_MOTION_BEFORE_HOMING // Inhibit movement until all axes have been homed

//#define UNKNOWN_Z_NO_RAISE // Don't raise Z (lower the bed) if Z is "unknown." For beds that fall when Z is powered off.

//#define Z_HOMING_HEIGHT 4 // (mm) Minimal Z height before homing (G28) for Z clearance above the bed, clamps, ...
// Be sure to have this much clearance over your Z_MAX_POS to prevent grinding.

//#define Z_AFTER_HOMING 10 // (mm) Height to move to after homing Z

// Direction of endstops when homing; 1=MAX, -1=MIN
// :[-1,1]
#define X_HOME_DIR 1
#define Y_HOME_DIR 1
#define Z_HOME_DIR -1

// @section machine

// The size of the print bed
#define X_BED_SIZE 220
#define Y_BED_SIZE 220

// Travel limits (mm) after homing, corresponding to endstop positions.
#define X_MIN_POS 0
#define Y_MIN_POS 0
#define Z_MIN_POS 0
#define Z_MAX_POS 300

* Software Endstops
* - Prevent moves outside the set machine bounds.
* - Individual axes can be disabled, if desired.
* - X and Y only apply to Cartesian robots.
* - Use 'M211' to set software endstops on/off or report current state

// Min software endstops constrain movement within minimum coordinate bounds

// Max software endstops constrain movement within maximum coordinate bounds

//#define SOFT_ENDSTOPS_MENU_ITEM // Enable/Disable software endstops from the LCD

* Filament Runout Sensors
* Mechanical or opto endstops are used to check for the presence of filament.
* RAMPS-based boards use SERVO3_PIN for the first runout sensor.
* For other boards you may need to define FIL_RUNOUT_PIN, FIL_RUNOUT2_PIN, etc.
#define FIL_RUNOUT_ENABLED_DEFAULT true // Enable the sensor on startup. Override with M412 followed by M500.
#define NUM_RUNOUT_SENSORS 1 // Number of sensors, up to one per extruder. Define a FIL_RUNOUT#_PIN for each.
#define FIL_RUNOUT_STATE HIGH // Pin state indicating that filament is NOT present.
#define FIL_RUNOUT_PULLUP // Use internal pullup for filament runout pins.
//#define FIL_RUNOUT_PULLDOWN // Use internal pulldown for filament runout pins.

// Set one or more commands to execute on filament runout.
// (After 'M412 H' Marlin will ask the host to handle the process.)

// After a runout is detected, continue printing this length of filament
// before executing the runout script. Useful for a sensor at the end of
// a feed tube. Requires 4 bytes SRAM per sensor, plus 4 bytes overhead.

// Enable this option to use an encoder disc that toggles the runout pin
// as the filament moves. (Be sure to set FILAMENT_RUNOUT_DISTANCE_MM
// large enough to avoid false positives.)

//=============================== Bed Leveling ==============================
// @section calibrate

* Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed.
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed.
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system combining the features and benefits
* of other systems. UBL also includes integrated Mesh Generation, Mesh
* Validation and Mesh Editing systems.
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.

* Normally G28 leaves leveling disabled on completion. Enable
* this option to have G28 restore the prior leveling state.

* Enable detailed logging of G28, G29, M48, etc.
* Turn on with the command 'M111 S32'.
* NOTE: Requires a lot of PROGMEM!

// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>

// For Cartesian machines, instead of dividing moves on mesh boundaries,
// split up moves into short segments like a Delta. This follows the
// contours of the bed more closely than edge-to-edge straight moves.
#define LEVELED_SEGMENT_LENGTH 5.0 // (mm) Length of all segments (except the last one)

* Enable the G26 Mesh Validation Pattern tool.
#define MESH_TEST_NOZZLE_SIZE 0.4 // (mm) Diameter of primary nozzle.
#define MESH_TEST_LAYER_HEIGHT 0.2 // (mm) Default layer height for the G26 Mesh Validation Tool.
#define MESH_TEST_HOTEND_TEMP 205 // (°C) Default nozzle temperature for the G26 Mesh Validation Tool.
#define MESH_TEST_BED_TEMP 60 // (°C) Default bed temperature for the G26 Mesh Validation Tool.
#define G26_XY_FEEDRATE 20 // (mm/s) Feedrate for XY Moves for the G26 Mesh Validation Tool.
#define G26_RETRACT_MULTIPLIER 1.0 // G26 Q (retraction) used by default between mesh test elements.



// Set the number of grid points per dimension.

// Probe along the Y axis, advancing X after each column
//#define PROBE_Y_FIRST


// Beyond the probed grid, continue the implied tilt?
// Default is to maintain the height of the nearest edge.

// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
// Number of subdivisions between probe points



//========================= Unified Bed Leveling ============================

//#define MESH_EDIT_GFX_OVERLAY // Display a graphics overlay while editing the mesh

#define MESH_INSET 1 // Set Mesh bounds as an inset region of the bed
#define GRID_MAX_POINTS_X 10 // Don't use more than 15 points per axis, implementation limited.

#define UBL_MESH_EDIT_MOVES_Z // Sophisticated users prefer no movement of nozzle
#define UBL_SAVE_ACTIVE_ON_M500 // Save the currently active mesh in the current slot on M500

//#define UBL_Z_RAISE_WHEN_OFF_MESH 2.5 // When the nozzle is off the mesh, this value is used
// as the Z-Height correction value.


//=================================== Mesh ==================================

#define MESH_INSET 10 // Set Mesh bounds as an inset region of the bed
#define GRID_MAX_POINTS_X 3 // Don't use more than 7 points per axis, implementation limited.

//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS

#endif // BED_LEVELING

* Add a bed leveling sub-menu for ABL or MBL.
* Include a guided procedure if manual probing is enabled.

#define MESH_EDIT_Z_STEP 0.025 // (mm) Step size while manually probing Z axis.
#define LCD_PROBE_Z_RANGE 4 // (mm) Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_EDIT_MENU // Add a menu to edit mesh points

// Add a menu item to move between bed corners for manual bed adjustment

#define LEVEL_CORNERS_INSET_LFRB { 30, 30, 30, 30 } // (mm) Left, Front, Right, Back insets
#define LEVEL_CORNERS_HEIGHT 0.0 // (mm) Z height of nozzle at leveling points
#define LEVEL_CORNERS_Z_HOP 4.0 // (mm) Z height of nozzle between leveling points
//#define LEVEL_CENTER_TOO // Move to the center after the last corner

* Commands to execute at the end of G29 probing.
* Useful to retract or move the Z probe out of the way.
//#define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10"

// @section homing

// The center of the bed is at (X=0, Y=0)
//#define BED_CENTER_AT_0_0

// Manually set the home position. Leave these undefined for automatic settings.
// For DELTA this is the top-center of the Cartesian print volume.
//#define MANUAL_X_HOME_POS 0
//#define MANUAL_Y_HOME_POS 0
//#define MANUAL_Z_HOME_POS 0

// Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.
// With this feature enabled:
// - Allow Z homing only after X and Y homing AND stepper drivers still enabled.
// - If stepper drivers time out, it will need X and Y homing again before Z homing.
// - Move the Z probe (or nozzle) to a defined XY point before Z Homing.
// - Prevent Z homing when the Z probe is outside bed area.

#define Z_SAFE_HOMING_X_POINT X_CENTER // X point for Z homing
#define Z_SAFE_HOMING_Y_POINT Y_CENTER // Y point for Z homing

// Homing speeds (mm/min)
#define HOMING_FEEDRATE_XY (50*60)
#define HOMING_FEEDRATE_Z (4*60)

// Validate that endstops are triggered on homing moves

// @section calibrate

* Bed Skew Compensation
* This feature corrects for misalignment in the XYZ axes.
* Take the following steps to get the bed skew in the XY plane:
* 1. Print a test square (e.g.,
* 2. For XY_DIAG_AC measure the diagonal A to C
* 3. For XY_DIAG_BD measure the diagonal B to D
* 4. For XY_SIDE_AD measure the edge A to D
* Marlin automatically computes skew factors from these measurements.
* Skew factors may also be computed and set manually:
* - Compute AB : SQRT(2*AC*AC+2*BD*BD-4*AD*AD)/2
* If desired, follow the same procedure for XZ and YZ.
* Use these diagrams for reference:
* Y Z Z
* ^ B-------C ^ B-------C ^ B-------C
* | / / | / / | / /
* | / / | / / | / /
* | A-------D | A-------D | A-------D
* +-------------->X +-------------->X +-------------->Y

// Input all length measurements here:
#define XY_DIAG_AC 282.8427124746
#define XY_DIAG_BD 282.8427124746
#define XY_SIDE_AD 200

// Or, set the default skew factors directly here
// to override the above measurements:
#define XY_SKEW_FACTOR 0.0

#define XZ_DIAG_AC 282.8427124746
#define XZ_DIAG_BD 282.8427124746
#define YZ_DIAG_AC 282.8427124746
#define YZ_DIAG_BD 282.8427124746
#define YZ_SIDE_AD 200
#define XZ_SKEW_FACTOR 0.0
#define YZ_SKEW_FACTOR 0.0

// Enable this option for M852 to set skew at runtime

//============================= Additional Features ===========================

// @section extras

* Persistent storage to preserve configurable settings across reboots.
* M500 - Store settings to EEPROM.
* M501 - Read settings from EEPROM. (i.e., Throw away unsaved changes)
* M502 - Revert settings to "factory" defaults. (Follow with M500 to init the EEPROM.)
#define EEPROM_SETTINGS // Persistent storage with M500 and M501
//#define DISABLE_M503 // Saves ~2700 bytes of PROGMEM. Disable for release!
#define EEPROM_CHITCHAT // Give feedback on EEPROM commands. Disable to save PROGMEM.
#define EEPROM_BOOT_SILENT // Keep M503 quiet and only give errors during first load
#define EEPROM_AUTO_INIT // Init EEPROM automatically on any errors.

// Host Keepalive
// When enabled Marlin will send a busy status message to the host
// every couple of seconds when it can't accept commands.
#define HOST_KEEPALIVE_FEATURE // Disable this if your host doesn't like keepalive messages
#define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between "busy" messages. Set with M113.
#define BUSY_WHILE_HEATING // Some hosts require "busy" messages even during heating

// G20/G21 Inch mode support

// M149 Set temperature units support

// @section temperature

// Preheat Constants
#define PREHEAT_1_TEMP_BED 60
#define PREHEAT_1_FAN_SPEED 255 // Value from 0 to 255

#define PREHEAT_2_TEMP_BED 80
#define PREHEAT_2_FAN_SPEED 255 // Value from 0 to 255

* Nozzle Park
* Park the nozzle at the given XYZ position on idle or G27.
* The "P" parameter controls the action applied to the Z axis:
* P0 (Default) If Z is below park Z raise the nozzle.
* P1 Raise the nozzle always to Z-park height.
* P2 Raise the nozzle by Z-park amount, limited to Z_MAX_POS.

// Specify a park position as { X, Y, Z_raise }
#define NOZZLE_PARK_POINT { (X_MIN_POS + 10), (Y_MAX_POS - 10), 20 }
//#define NOZZLE_PARK_X_ONLY // X move only is required to park
//#define NOZZLE_PARK_Y_ONLY // Y move only is required to park
#define NOZZLE_PARK_Z_RAISE_MIN 2 // (mm) Always raise Z by at least this distance
#define NOZZLE_PARK_XY_FEEDRATE 100 // (mm/s) X and Y axes feedrate (also used for delta Z axis)
#define NOZZLE_PARK_Z_FEEDRATE 5 // (mm/s) Z axis feedrate (not used for delta printers)

* Clean Nozzle Feature -- EXPERIMENTAL
* Adds the G12 command to perform a nozzle cleaning process.
* Parameters:
* P Pattern
* S Strokes / Repetitions
* T Triangles (P1 only)
* Patterns:
* P0 Straight line (default). This process requires a sponge type material
* at a fixed bed location. "S" specifies strokes (i.e. back-forth motions)
* between the start / end points.
* P1 Zig-zag pattern between (X0, Y0) and (X1, Y1), "T" specifies the
* number of zig-zag triangles to do. "S" defines the number of strokes.
* Zig-zags are done in whichever is the narrower dimension.
* For example, "G12 P1 S1 T3" will execute:
* --
* | (X0, Y1) | /\ /\ /\ | (X1, Y1)
* | | / \ / \ / \ |
* A | | / \ / \ / \ |
* | | / \ / \ / \ |
* | (X0, Y0) | / \/ \/ \ | (X1, Y0)
* -- +--------------------------------+
* |________|_________|_________|
* T1 T2 T3
* P2 Circular pattern with middle at NOZZLE_CLEAN_CIRCLE_MIDDLE.
* "R" specifies the radius. "S" specifies the stroke count.
* Before starting, the nozzle moves to NOZZLE_CLEAN_START_POINT.
* Caveats: The ending Z should be the same as starting Z.
* Attention: EXPERIMENTAL. G-code arguments may change.

// Default number of pattern repetitions

// Default number of triangles

// Specify positions for each tool as { { X, Y, Z }, { X, Y, Z } }
// Dual hotend system may use { { -20, (Y_BED_SIZE / 2), (Z_MIN_POS + 1) }, { 420, (Y_BED_SIZE / 2), (Z_MIN_POS + 1) }}
#define NOZZLE_CLEAN_START_POINT { { 30, 30, (Z_MIN_POS + 1) } }
#define NOZZLE_CLEAN_END_POINT { { 100, 60, (Z_MIN_POS + 1) } }

// Circular pattern radius
// Circular pattern circle fragments number
// Middle point of circle

// Move the nozzle to the initial position after cleaning

// For a purge/clean station that's always at the gantry height (thus no Z move)

// For a purge/clean station mounted on the X axis

// Explicit wipe G-code script applies to a G12 with no arguments.
//#define WIPE_SEQUENCE_COMMANDS "G1 X-17 Y25 Z10 F4000\nG1 Z1\nM114\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 Z15\nM400\nG0 X-10.0 Y-9.0"


* Print Job Timer
* Automatically start and stop the print job timer on M104/M109/M190.
* M104 (hotend, no wait) - high temp = none, low temp = stop timer
* M109 (hotend, wait) - high temp = start timer, low temp = stop timer
* M190 (bed, wait) - high temp = start timer, low temp = none
* The timer can also be controlled with the following commands:
* M75 - Start the print job timer
* M76 - Pause the print job timer
* M77 - Stop the print job timer

* Print Counter
* Track statistical data such as:
* - Total print jobs
* - Total successful print jobs
* - Total failed print jobs
* - Total time printing
* View the current statistics with M78.

* Password
* Set a numerical password for the printer which can be requested:
* - When the printer boots up
* - Upon opening the 'Print from Media' Menu
* - When SD printing is completed or aborted
* The following G-codes can be used:
* M510 - Lock Printer. Blocks all commands except M511.
* M511 - Unlock Printer.
* M512 - Set, Change and Remove Password.
* If you forget the password and get locked out you'll need to re-flash
* the firmware with the feature disabled, reset EEPROM, and (optionally)
* re-flash the firmware again with this feature enabled.
#define PASSWORD_LENGTH 4 // (#) Number of digits (1-9). 3 or 4 is recommended
#define PASSWORD_UNLOCK_GCODE // Unlock with the M511 P<password> command. Disable to prevent brute-force attack.
#define PASSWORD_CHANGE_GCODE // Change the password with M512 P<old> S<new>.
//#define PASSWORD_ON_SD_PRINT_MENU // This does not prevent gcodes from running
//#include "Configuration_Secure.h" // External file with PASSWORD_DEFAULT_VALUE

//============================= LCD and SD support ============================

// @section lcd

* Select the language to display on the LCD. These languages are available:
* en, an, bg, ca, cz, da, de, el, el_gr, es, eu, fi, fr, gl, hr, hu, it,
* jp_kana, ko_KR, nl, pl, pt, pt_br, ro, ru, sk, tr, uk, vi, zh_CN, zh_TW, test
* :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cz':'Czech', 'da':'Danish', 'de':'German', 'el':'Greek', 'el_gr':'Greek (Greece)', 'es':'Spanish', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'gl':'Galician', 'hr':'Croatian', 'hu':'Hungarian', 'it':'Italian', 'jp_kana':'Japanese', 'ko_KR':'Korean (South Korea)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt_br':'Portuguese (Brazilian)', 'ro':'Romanian', 'ru':'Russian', 'sk':'Slovak', 'tr':'Turkish', 'uk':'Ukrainian', 'vi':'Vietnamese', 'zh_CN':'Chinese (Simplified)', 'zh_TW':'Chinese (Traditional)', 'test':'TEST' }
#define LCD_LANGUAGE en

* LCD Character Set
* Note: This option is NOT applicable to Graphical Displays.
* All character-based LCDs provide ASCII plus one of these
* language extensions:
* - JAPANESE ... the most common
* - WESTERN ... with more accented characters
* - CYRILLIC ... for the Russian language
* To determine the language extension installed on your controller:
* - Compile and upload with LCD_LANGUAGE set to 'test'
* - Click the controller to view the LCD menu
* - The LCD will display Japanese, Western, or Cyrillic text
* See

* Info Screen Style (0:Classic, 1:Průša)
* :[0:'Classic', 1:'Průša']

* SD Card support is disabled by default. If your controller has an SD slot,
* you must uncomment the following option or it won't work.

* Enable one of the following items for a slower SPI transfer speed.
* This may be required to resolve "volume init" errors.

* Use CRC checks and retries on the SD communication.

* LCD Menu Items
* Disable all menus and only display the Status Screen, or
* just remove some extraneous menu items to recover space.
//#define NO_LCD_MENUS
//#define SLIM_LCD_MENUS

// This option overrides the default number of encoder pulses needed to
// produce one step. Should be increased for high-resolution encoders.

// Use this option to override the number of step signals required to
// move between next/prev menu items.

* Encoder Direction Options
* Test your encoder's behavior first with both options disabled.
* Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION.
* Reversed Menu Navigation only? Enable REVERSE_MENU_DIRECTION.
* Reversed Value Editing only? Enable BOTH options.

// This option reverses the encoder direction everywhere.
// Set this option if CLOCKWISE causes values to DECREASE

// This option reverses the encoder direction for navigating LCD menus.
// If CLOCKWISE normally moves DOWN this makes it go UP.
// If CLOCKWISE normally moves UP this makes it go DOWN.

// This option reverses the encoder direction for Select Screen.
// If CLOCKWISE normally moves LEFT this makes it go RIGHT.
// If CLOCKWISE normally moves RIGHT this makes it go LEFT.

// Individual Axis Homing
// Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu.

// If you have a speaker that can produce tones, enable it here.
// By default Marlin assumes you have a buzzer with a fixed frequency.
//#define SPEAKER

// The duration and frequency for the UI feedback sound.
// Set these to 0 to disable audio feedback in the LCD menus.
// Note: Test audio output with the G-Code:
// M300 S<frequency Hz> P<duration ms>

//======================== LCD / Controller Selection =========================
//======================== (Character-based LCDs) =========================

// RepRapDiscount Smart Controller.
// Note: Usually sold with a white PCB.

// Original RADDS LCD Display+Encoder+SDCardReader

// ULTIMAKER Controller.

// ULTIPANEL as seen on Thingiverse.
//#define ULTIPANEL

// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
//#define PANEL_ONE

// GADGETS3D G3D LCD/SD Controller
// Note: Usually sold with a blue PCB.
//#define G3D_PANEL

// RigidBot Panel V1.0

// Makeboard 3D Printer Parts 3D Printer Mini Display 1602 Mini Controller

// ANET and Tronxy 20x4 Controller
//#define ZONESTAR_LCD // Requires ADC_KEYPAD_PIN to be assigned to an analog pin.
// This LCD is known to be susceptible to electrical interference
// which scrambles the display. Pressing any button clears it up.
// This is a LCD2004 display with 5 analog buttons.

// Generic 16x2, 16x4, 20x2, or 20x4 character-based LCD.
//#define ULTRA_LCD

//======================== LCD / Controller Selection =========================
//===================== (I2C and Shift-Register LCDs) =====================

// Note: These controllers require the installation of Arduino's LiquidCrystal_I2C
// library. For more info:

// Elefu RA Board Control Panel

// Sainsmart (YwRobot) LCD Displays
// These require F.Malpartida's LiquidCrystal_I2C library
//#define LCD_SAINSMART_I2C_1602
//#define LCD_SAINSMART_I2C_2004

// Generic LCM1602 LCD adapter
//#define LCM1602

// PANELOLU2 LCD with status LEDs,
// separate encoder and click inputs.
// Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later.
// For more info:
// Note: The PANELOLU2 encoder click input can either be directly connected to
// a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
//#define LCD_I2C_PANELOLU2

// Panucatt VIKI LCD with status LEDs,
// integrated click & L/R/U/D buttons, separate encoder inputs.
//#define LCD_I2C_VIKI

// CONTROLLER TYPE: Shift register panels

// 2-wire Non-latching LCD SR from
// LCD configuration:
//#define SAV_3DLCD

// 3-wire SR LCD with strobe using 74HC4094
// Uses the code directly from Sailfish

// TFT GLCD Panel with Marlin UI
// Panel connected to main board by SPI or I2C interface.
// See

//======================= LCD / Controller Selection =======================
//========================= (Graphical LCDs) ========================

// CONTROLLER TYPE: Graphical 128x64 (DOGM)
// IMPORTANT: The U8glib library is required for Graphical Display!
// NOTE: If the LCD is unresponsive you may need to reverse the plugs.

// RepRapDiscount FULL GRAPHIC Smart Controller

// ReprapWorld Graphical LCD

// Activate one of these if you have a Panucatt Devices
// Viki 2.0 or mini Viki with Graphic LCD
//#define VIKI2
//#define miniVIKI

// MakerLab Mini Panel with graphic
// controller and SD support -
//#define MINIPANEL

// MaKr3d Makr-Panel with graphic controller and SD support.
//#define MAKRPANEL

// Adafruit ST7565 Full Graphic Controller.

// BQ LCD Smart Controller shipped by
// default with the BQ Hephestos 2 and Witbox 2.

// Cartesio UI
//#define CARTESIO_UI

// LCD for Melzi Card with Graphical LCD
//#define LCD_FOR_MELZI

// Original Ulticontroller from Ultimaker 2 printer with SSD1309 I2C display and encoder

// MKS MINI12864 with graphic controller and SD support
//#define MKS_MINI_12864

// MKS LCD12864A/B with graphic controller and SD support. Follows MKS_MINI_12864 pinout.
//#define MKS_LCD12864

// FYSETC variant of the MINI12864 graphic controller with SD support
//#define FYSETC_MINI_12864_X_X // Type C/D/E/F. No tunable RGB Backlight by default
//#define FYSETC_MINI_12864_1_2 // Type C/D/E/F. Simple RGB Backlight (always on)
//#define FYSETC_MINI_12864_2_0 // Type A/B. Discreet RGB Backlight
//#define FYSETC_MINI_12864_2_1 // Type A/B. NeoPixel RGB Backlight
//#define FYSETC_GENERIC_12864_1_1 // Larger display with basic ON/OFF backlight.

// Factory display for Creality CR-10
// This is RAMPS-compatible using a single 10-pin connector.
// (For CR-10 owners who want to replace the Melzi Creality board but retain the display)

// Ender-2 OEM display, a variant of the MKS_MINI_12864

// ANET and Tronxy Graphical Controller
// Anet 128x64 full graphics lcd with rotary encoder as used on Anet A6
// A clone of the RepRapDiscount full graphics display but with
// different pins/wiring (see pins_ANET_10.h).

// AZSMZ 12864 LCD with SD
//#define AZSMZ_12864

// Silvergate GLCD controller

//============================== OLED Displays ==============================

// SSD1306 OLED full graphics generic display
//#define U8GLIB_SSD1306

// SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules
//#define SAV_3DGLCD
#define U8GLIB_SSD1306
//#define U8GLIB_SH1106

// TinyBoy2 128x64 OLED / Encoder Panel

// Tiny, but very sharp OLED display
//#define MKS_12864OLED // Uses the SH1106 controller (default)
//#define MKS_12864OLED_SSD1306 // Uses the SSD1306 controller

//#define ZONESTAR_12864LCD // Graphical (DOGM) with ST7920 controller
//#define ZONESTAR_12864OLED // 1.3" OLED with SH1106 controller (default)
//#define ZONESTAR_12864OLED_SSD1306 // 0.96" OLED with SSD1306 controller

// Einstart S OLED SSD1306
//#define U8GLIB_SH1106_EINSTART

// Overlord OLED display/controller with i2c buzzer and LEDs

// Where to find :
//#define FYSETC_242_OLED_12864 // Uses the SSD1309 controller

//========================== Extensible UI Displays ===========================

// DGUS Touch Display with DWIN OS. (Choose one.)

// Touch-screen LCD for Malyan M200/M300 printers
//#define MALYAN_LCD
#define LCD_SERIAL_PORT 1 // Default is 1 for Malyan M200

// Touch UI for FTDI EVE (FT800/FT810) displays
// See Configuration_adv.h for all configuration options.

// Touch-screen LCD for Anycubic printers
#define LCD_SERIAL_PORT 3 // Default is 3 for Anycubic

// Third-party or vendor-customized controller interfaces.
// Sources should be installed in 'src/lcd/extensible_ui'.

//#define EXTUI_LOCAL_BEEPER // Enables use of local Beeper pin with external display

//=============================== Graphical TFTs ==============================

* Specific TFT Model Presets. Enable one of the following options
* or enable TFT_GENERIC and set sub-options.

// 480x320, 3.5", SPI Display From MKS
// Normally used in MKS Robin Nano V2
//#define MKS_TS35_V2_0

// 320x240, 2.4", FSMC Display From MKS
// Normally used in MKS Robin Nano V1.2
//#define MKS_ROBIN_TFT24

// 320x240, 2.8", FSMC Display From MKS
// Normally used in MKS Robin Nano V1.2
//#define MKS_ROBIN_TFT28

// 320x240, 3.2", FSMC Display From MKS
// Normally used in MKS Robin Nano V1.2
//#define MKS_ROBIN_TFT32

// 480x320, 3.5", FSMC Display From MKS
// Normally used in MKS Robin Nano V1.2
//#define MKS_ROBIN_TFT35

// 480x272, 4.3", FSMC Display From MKS
//#define MKS_ROBIN_TFT43

// 320x240, 3.2", FSMC Display From MKS
// Normally used in MKS Robin
//#define MKS_ROBIN_TFT_V1_1R

// 480x320, 3.5", FSMC Stock Display from TronxXY
//#define TFT_TRONXY_X5SA

// 480x320, 3.5", FSMC Stock Display from AnyCubic
//#define ANYCUBIC_TFT35

// 320x240, 2.8", FSMC Stock Display from Longer/Alfawise
//#define LONGER_LK_TFT28

// Generic TFT with detailed options
//#define TFT_GENERIC
// :[ 'AUTO', 'ST7735', 'ST7789', 'ST7796', 'R61505', 'ILI9328', 'ILI9341', 'ILI9488' ]

// Interface. Enable one of the following options:

// TFT Resolution. Enable one of the following options:
//#define TFT_RES_320x240
//#define TFT_RES_480x272
//#define TFT_RES_480x320

* TFT UI - User Interface Selection. Enable one of the following options:
* TFT_CLASSIC_UI - Emulated DOGM - 128x64 Upscaled
* TFT_COLOR_UI - Marlin Default Menus, Touch Friendly, using full TFT capabilities
* TFT_LVGL_UI - A Modern UI using LVGL
* For LVGL_UI also copy the 'assets' folder from the build directory to the
* root of your SD card, together with the compiled firmware.
//#define TFT_CLASSIC_UI
//#define TFT_COLOR_UI
//#define TFT_LVGL_UI

* TFT Rotation. Set to one of the following values:

//============================ Other Controllers ============================

// Ender-3 v2 OEM display. A DWIN display with Rotary Encoder.

// ADS7843/XPT2046 ADC Touchscreen such as ILI9341 2.8
//#define TOUCH_SCREEN
#define BUTTON_DELAY_EDIT 50 // (ms) Button repeat delay for edit screens
#define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus


//#define XPT2046_X_CALIBRATION 12316
//#define XPT2046_Y_CALIBRATION -8981
//#define XPT2046_X_OFFSET -43
//#define XPT2046_Y_OFFSET 257

//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // (mm) Distance to move per key-press

//=============================== Extra Features ==============================

// @section extras

// Set number of user-controlled fans. Disable to use all board-defined fans.
// :[1,2,3,4,5,6,7,8]
//#define NUM_M106_FANS 1

// Increase the FAN PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN

// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not as annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM

// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
// :[0,1,2,3,4,5,6,7]
#define SOFT_PWM_SCALE 0

// If SOFT_PWM_SCALE is set to a value higher than 0, dithering can
// be used to mitigate the associated resolution loss. If enabled,
// some of the PWM cycles are stretched so on average the desired
// duty cycle is attained.

// Temperature status LEDs that display the hotend and bed temperature.
// If all hotends, bed temperature, and target temperature are under 54C
// then the BLUE led is on. Otherwise the RED led is on. (1C hysteresis)
//#define TEMP_STAT_LEDS

// Support for the BariCUDA Paste Extruder
//#define BARICUDA

// Support for BlinkM/CyzRgb
//#define BLINKM

// Support for PCA9632 PWM LED driver
//#define PCA9632

// Support for PCA9533 PWM LED driver
//#define PCA9533

* RGB LED / LED Strip Control
* Enable support for an RGB LED connected to 5V digital pins, or
* an RGB Strip connected to MOSFETs controlled by digital pins.
* Adds the M150 command to set the LED (or LED strip) color.
* If pins are PWM capable (e.g., 4, 5, 6, 11) then a range of
* luminance values can be set from 0 to 255.
* For NeoPixel LED an overall brightness parameter is also available.
* *** CAUTION ***
* LED Strips require a MOSFET Chip between PWM lines and LEDs,
* as the Arduino cannot handle the current the LEDs will require.
* Failure to follow this precaution can destroy your Arduino!
* NOTE: A separate 5V power supply is required! The NeoPixel LED needs
* more current than the Arduino 5V linear regulator can produce.
* *** CAUTION ***
* LED Type. Enable only one of the following two options.
//#define RGB_LED
//#define RGBW_LED

//#define RGB_LED_R_PIN 34
//#define RGB_LED_G_PIN 43
//#define RGB_LED_B_PIN 35
//#define RGB_LED_W_PIN -1

// Support for Adafruit NeoPixel LED driver
//#define NEOPIXEL_LED
#define NEOPIXEL_TYPE NEO_GRB // NEO_GRBW / NEO_GRB - four/three channel driver type (defined in Adafruit_NeoPixel.h)
//#define NEOPIXEL_PIN 4 // LED driving pin
//#define NEOPIXEL2_PIN 5
#define NEOPIXEL_PIXELS 10 // Number of LEDs in the strip. (Longest strip when NEOPIXEL2_SEPARATE is disabled.)
#define NEOPIXEL_IS_SEQUENTIAL // Sequential display for temperature change - LED by LED. Disable to change all LEDs at once.
#define NEOPIXEL_BRIGHTNESS 127 // Initial brightness (0-255)
//#define NEOPIXEL_STARTUP_TEST // Cycle through colors at startup

// Support for second Adafruit NeoPixel LED driver controlled with M150 S1 ...
#define NEOPIXEL2_PIXELS 15 // Number of LEDs in the second strip
#define NEOPIXEL2_BRIGHTNESS 127 // Initial brightness (0-255)
#define NEOPIXEL2_STARTUP_TEST // Cycle through colors at startup
//#define NEOPIXEL2_INSERIES // Default behavior is NeoPixel 2 in parallel

// Use a single NeoPixel LED for static (background) lighting
//#define NEOPIXEL_BKGD_LED_INDEX 0 // Index of the LED to use
//#define NEOPIXEL_BKGD_COLOR { 255, 255, 255, 0 } // R, G, B, W

* Printer Event LEDs
* During printing, the LEDs will reflect the printer status:
* - Gradually change from blue to violet as the heated bed gets to target temp
* - Gradually change from violet to red as the hotend gets to temperature
* - Change to white to illuminate work surface
* - Change to green once print has finished
* - Turn off after the print has finished and the user has pushed a button

* Number of servos
* For some servo-related options NUM_SERVOS will be set automatically.
* Set this manually if there are extra servos needing manual control.
* Set to 0 to turn off servo support.
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command

// (ms) Delay before the next move will start, to give the servo time to reach its target angle.
// 300ms is a good value but you can try less delay.
// If the servo can't reach the requested position, increase it.
#define SERVO_DELAY { 300 }

// Only power servos during movement, otherwise leave off to prevent jitter

// Edit servo angles with M281 and save to EEPROM with M500

Active Member
Joined: 1 month ago
Posts: 16
26/10/2020 5:40 pm  

try 3 - Server Timeout Errors twice.


 * Marlin 3D Printer Firmware
 * Copyright (c) 2020 MarlinFirmware []
 * Based on Sprinter and grbl.
 * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * GNU General Public License for more details.
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <>.
#pragma once

#define CONFIG_EXAMPLES_DIR "Creality/Ender-5/BigTreeTech SKR Mini E3 2.0"

 * Configuration_adv.h
 * Advanced settings.
 * Only change these if you know exactly what you're doing.
 * Some of these settings can damage your printer if improperly set!
 * Basic settings can be found in Configuration.h

//============================= Thermal Settings ============================
// @section temperature

 * Thermocouple sensors are quite sensitive to noise.  Any noise induced in
 * the sensor wires, such as by stepper motor wires run in parallel to them,
 * may result in the thermocouple sensor reporting spurious errors.  This
 * value is the number of errors which can occur in a row before the error
 * is reported.  This allows us to ignore intermittent error conditions while
 * still detecting an actual failure, which should result in a continuous
 * stream of errors from the sensor.
 * Set this value to 0 to fail on the first error to occur.

// Custom Thermistor 1000 parameters
#if TEMP_SENSOR_0 == 1000
  #define HOTEND0_PULLUP_RESISTOR_OHMS 4700    // Pullup resistor
  #define HOTEND0_RESISTANCE_25C_OHMS  100000  // Resistance at 25C
  #define HOTEND0_BETA                 3950    // Beta value

#if TEMP_SENSOR_1 == 1000
  #define HOTEND1_PULLUP_RESISTOR_OHMS 4700    // Pullup resistor
  #define HOTEND1_RESISTANCE_25C_OHMS  100000  // Resistance at 25C
  #define HOTEND1_BETA                 3950    // Beta value

#if TEMP_SENSOR_2 == 1000
  #define HOTEND2_PULLUP_RESISTOR_OHMS 4700    // Pullup resistor
  #define HOTEND2_RESISTANCE_25C_OHMS  100000  // Resistance at 25C
  #define HOTEND2_BETA                 3950    // Beta value

#if TEMP_SENSOR_3 == 1000
  #define HOTEND3_PULLUP_RESISTOR_OHMS 4700    // Pullup resistor
  #define HOTEND3_RESISTANCE_25C_OHMS  100000  // Resistance at 25C
  #define HOTEND3_BETA                 3950    // Beta value

#if TEMP_SENSOR_4 == 1000
  #define HOTEND4_PULLUP_RESISTOR_OHMS 4700    // Pullup resistor
  #define HOTEND4_RESISTANCE_25C_OHMS  100000  // Resistance at 25C
  #define HOTEND4_BETA                 3950    // Beta value

#if TEMP_SENSOR_5 == 1000
  #define HOTEND5_PULLUP_RESISTOR_OHMS 4700    // Pullup resistor
  #define HOTEND5_RESISTANCE_25C_OHMS  100000  // Resistance at 25C
  #define HOTEND5_BETA                 3950    // Beta value

#if TEMP_SENSOR_6 == 1000
  #define HOTEND6_PULLUP_RESISTOR_OHMS 4700    // Pullup resistor
  #define HOTEND6_RESISTANCE_25C_OHMS  100000  // Resistance at 25C
  #define HOTEND6_BETA                 3950    // Beta value

#if TEMP_SENSOR_7 == 1000
  #define HOTEND7_PULLUP_RESISTOR_OHMS 4700    // Pullup resistor
  #define HOTEND7_RESISTANCE_25C_OHMS  100000  // Resistance at 25C
  #define HOTEND7_BETA                 3950    // Beta value

#if TEMP_SENSOR_BED == 1000
  #define BED_PULLUP_RESISTOR_OHMS     4700    // Pullup resistor
  #define BED_RESISTANCE_25C_OHMS      100000  // Resistance at 25C
  #define BED_BETA                     3950    // Beta value

  #define CHAMBER_PULLUP_RESISTOR_OHMS 4700    // Pullup resistor
  #define CHAMBER_RESISTANCE_25C_OHMS  100000  // Resistance at 25C
  #define CHAMBER_BETA                 3950    // Beta value

// Hephestos 2 24V heated bed upgrade kit.
  #define TEMP_SENSOR_BED 70

// Heated Bed Bang-Bang options
  #define BED_CHECK_INTERVAL 5000   // (ms) Interval between checks in bang-bang control
    #define BED_HYSTERESIS 2        // (°C) Only set the relevant heater state when ABS(T-target) > BED_HYSTERESIS

// Heated Chamber options
  #define CHAMBER_MINTEMP             5
  #define CHAMBER_MAXTEMP            60
  #define TEMP_CHAMBER_HYSTERESIS     1   // (°C) Temperature proximity considered "close enough" to the target
  //#define HEATER_CHAMBER_PIN       44   // Chamber heater on/off pin

  //#define CHAMBER_FAN               // Enable a fan on the chamber
    #define CHAMBER_FAN_MODE 2        // Fan control mode: 0=Static; 1=Linear increase when temp is higher than target; 2=V-shaped curve.
    #if CHAMBER_FAN_MODE == 0
      #define CHAMBER_FAN_BASE  255   // Chamber fan PWM (0-255)
    #elif CHAMBER_FAN_MODE == 1
      #define CHAMBER_FAN_BASE  128   // Base chamber fan PWM (0-255); turns on when chamber temperature is above the target
      #define CHAMBER_FAN_FACTOR 25   // PWM increase per °C above target
    #elif CHAMBER_FAN_MODE == 2
      #define CHAMBER_FAN_BASE  128   // Minimum chamber fan PWM (0-255)
      #define CHAMBER_FAN_FACTOR 25   // PWM increase per °C difference from target

  //#define CHAMBER_VENT              // Enable a servo-controlled vent on the chamber
    #define CHAMBER_VENT_SERVO_NR  1  // Index of the vent servo
    #define HIGH_EXCESS_HEAT_LIMIT 5  // How much above target temp to consider there is excess heat in the chamber

 * Thermal Protection provides additional protection to your printer from damage
 * and fire. Marlin always includes safe min and max temperature ranges which
 * protect against a broken or disconnected thermistor wire.
 * The issue: If a thermistor falls out, it will report the much lower
 * temperature of the air in the room, and the the firmware will keep
 * the heater on.
 * The solution: Once the temperature reaches the target, start observing.
 * If the temperature stays too far below the target (hysteresis) for too
 * long (period), the firmware will halt the machine as a safety precaution.
 * If you get false positives for "Thermal Runaway", increase
  #define THERMAL_PROTECTION_PERIOD 40        // Seconds
  #define THERMAL_PROTECTION_HYSTERESIS 4     // Degrees Celsius

  //#define ADAPTIVE_FAN_SLOWING              // Slow part cooling fan if temperature drops
    //#define NO_FAN_SLOWING_IN_PID_TUNING    // Don't slow fan speed during M303

   * Whenever an M104, M109, or M303 increases the target temperature, the
   * firmware will wait for the WATCH_TEMP_PERIOD to expire. If the temperature
   * hasn't increased by WATCH_TEMP_INCREASE degrees, the machine is halted and
   * requires a hard reset. This test restarts with any M104/M109/M303, but only
   * if the current temperature is far enough below the target for a reliable
   * test.
   * If you get false positives for "Heating failed", increase WATCH_TEMP_PERIOD
   * and/or decrease WATCH_TEMP_INCREASE. WATCH_TEMP_INCREASE should not be set
   * below 2.
  #define WATCH_TEMP_PERIOD 20                // Seconds
  #define WATCH_TEMP_INCREASE 2               // Degrees Celsius

 * Thermal Protection parameters for the bed are just as above for hotends.
  #define THERMAL_PROTECTION_BED_PERIOD        20 // Seconds
  #define THERMAL_PROTECTION_BED_HYSTERESIS     2 // Degrees Celsius

   * As described above, except for the bed (M140/M190/M303).
  #define WATCH_BED_TEMP_PERIOD                60 // Seconds
  #define WATCH_BED_TEMP_INCREASE               2 // Degrees Celsius

 * Thermal Protection parameters for the heated chamber.

   * Heated chamber watch settings (M141/M191).
  #define WATCH_CHAMBER_TEMP_PERIOD            60 // Seconds
  #define WATCH_CHAMBER_TEMP_INCREASE           2 // Degrees Celsius

  // Add an experimental additional term to the heater power, proportional to the extrusion speed.
  // A well-chosen Kc value should add just enough power to melt the increased material volume.
    #define DEFAULT_Kc (100) // heating power = Kc * e_speed
    #define LPQ_MAX_LEN 50

   * Add an experimental additional term to the heater power, proportional to the fan speed.
   * A well-chosen Kf value should add just enough power to compensate for power-loss from the cooling fan.
   * You can either just add a constant compensation with the DEFAULT_Kf value
   * or follow the instruction below to get speed-dependent compensation.
   * Constant compensation (use only with fanspeeds of 0% and 100%)
   * ---------------------------------------------------------------------
   * A good starting point for the Kf-value comes from the calculation:
   *   kf = (power_fan * eff_fan) / power_heater * 255
   * where eff_fan is between 0.0 and 1.0, based on fan-efficiency and airflow to the nozzle / heater.
   * Example:
   *   Heater: 40W, Fan: 0.1A * 24V = 2.4W, eff_fan = 0.8
   *   Kf = (2.4W * 0.8) / 40W * 255 = 12.24
   * Fan-speed dependent compensation
   * --------------------------------
   * 1. To find a good Kf value, set the hotend temperature, wait for it to settle, and enable the fan (100%).
   *    If you see the temperature drop repeat the test, increasing the Kf value slowly, until the temperature
   *    drop goes away. If the temperature overshoots after enabling the fan, the Kf value is too big.
   * 2. Note the Kf-value for fan-speed at 100%
   * 3. Determine a good value for PID_FAN_SCALING_MIN_SPEED, which is around the speed, where the fan starts moving.
   * 4. Repeat step 1. and 2. for this fan speed.
   * 5. Enable PID_FAN_SCALING_ALTERNATIVE_DEFINITION and enter the two identified Kf-values in
  //#define PID_FAN_SCALING
      // The alternative definition is used for an easier configuration.
      // Just figure out Kf at fullspeed (255) and PID_FAN_SCALING_MIN_SPEED.
      // DEFAULT_Kf and PID_FAN_SCALING_LIN_FACTOR are calculated accordingly.

      #define PID_FAN_SCALING_MIN_SPEED 10.0            // Minimum fan speed at which to enable PID_FAN_SCALING


      #define PID_FAN_SCALING_LIN_FACTOR (0)             // Power loss due to cooling = Kf * (fan_speed)
      #define DEFAULT_Kf 10                              // A constant value added to the PID-tuner
      #define PID_FAN_SCALING_MIN_SPEED 10               // Minimum fan speed at which to enable PID_FAN_SCALING

 * Automatic Temperature Mode
 * Dynamically adjust the hotend target temperature based on planned E moves.
 * (Contrast with PID_EXTRUSION_SCALING, which tracks E movement and adjusts PID
 *  behavior using an additional kC value.)
 * Autotemp is calculated by (mintemp + factor * mm_per_sec), capped to maxtemp.
 * Enable Autotemp Mode with M104/M109 F<factor> S<mintemp> B<maxtemp>.
 * Disable by sending M104/M109 with no F parameter (or F0 with AUTOTEMP_PROPORTIONAL).
#define AUTOTEMP
  #define AUTOTEMP_OLDWEIGHT    0.98
  // Turn on AUTOTEMP on M104/M109 by default using proportions set here
    #define AUTOTEMP_MIN_P      0 // (°C) Added to the target temperature
    #define AUTOTEMP_MAX_P      5 // (°C) Added to the target temperature
    #define AUTOTEMP_FACTOR_P   1 // Apply this F parameter by default (overridden by M104/M109 F)

// Show Temperature ADC value
// Enable for M105 to include ADC values read from temperature sensors.

 * High Temperature Thermistor Support
 * Thermistors able to support high temperature tend to have a hard time getting
 * good readings at room and lower temperatures. This means HEATER_X_RAW_LO_TEMP
 * will probably be caught when the heating element first turns on during the
 * preheating process, which will trigger a min_temp_error as a safety measure
 * and force stop everything.
 * To circumvent this limitation, we allow for a preheat time (during which,
 * min_temp_error won't be triggered) and add a min_temp buffer to handle
 * aberrant readings.
 * If you want to enable this feature for your hotend thermistor(s)
 * uncomment and set values > 0 in the constants below

// The number of consecutive low temperature errors that can occur
// before a min_temp_error is triggered. (Shouldn't be more than 10.)

// The number of milliseconds a hotend will preheat before starting to check
// the temperature. This value should NOT be set to the time it takes the
// hot end to reach the target temperature, but the time it takes to reach
// the minimum temperature your thermistor can read. The lower the better/safer.
// This shouldn't need to be more than 30 seconds (30000)

// @section extruder

// Extruder runout prevention.
// If the machine is idle and the temperature over MINTEMP
// then extrude some filament every couple of SECONDS.
  #define EXTRUDER_RUNOUT_SPEED 1500  // (mm/min)
  #define EXTRUDER_RUNOUT_EXTRUDE 5   // (mm)

 * Hotend Idle Timeout
 * Prevent filament in the nozzle from charring and causing a critical jam.
  #define HOTEND_IDLE_TIMEOUT_SEC (5*60)    // (seconds) Time without extruder movement to trigger protection
  #define HOTEND_IDLE_MIN_TRIGGER   180     // (°C) Minimum temperature to enable hotend protection
  #define HOTEND_IDLE_NOZZLE_TARGET   0     // (°C) Safe temperature for the nozzle after timeout
  #define HOTEND_IDLE_BED_TARGET      0     // (°C) Safe temperature for the bed after timeout

// @section temperature

// Calibration for AD595 / AD8495 sensor to adjust temperature measurements.
// The final temperature is calculated as (measuredTemp * GAIN) + OFFSET.
#define TEMP_SENSOR_AD595_OFFSET  0.0
#define TEMP_SENSOR_AD595_GAIN    1.0
#define TEMP_SENSOR_AD8495_OFFSET 0.0
#define TEMP_SENSOR_AD8495_GAIN   1.0

 * Controller Fan
 * To cool down the stepper drivers and MOSFETs.
 * The fan turns on automatically whenever any driver is enabled and turns
 * off (or reduces to idle speed) shortly after drivers are turned off.
  //#define CONTROLLER_FAN_PIN -1        // Set a custom pin for the controller fan
  //#define CONTROLLER_FAN_USE_Z_ONLY    // With this option only the Z axis is considered
  //#define CONTROLLER_FAN_IGNORE_Z      // Ignore Z stepper. Useful when stepper timeout is disabled.
  #define CONTROLLERFAN_SPEED_MIN      0 // (0-255) Minimum speed. (If set below this value the fan is turned off.)
  #define CONTROLLERFAN_SPEED_ACTIVE 255 // (0-255) Active speed, used when any motor is enabled
  #define CONTROLLERFAN_SPEED_IDLE     0 // (0-255) Idle speed, used when motors are disabled
  #define CONTROLLERFAN_IDLE_TIME     60 // (seconds) Extra time to keep the fan running after disabling motors
  #define CONTROLLER_FAN_EDITABLE      // Enable M710 configurable settings
    #define CONTROLLER_FAN_MENU          // Enable the Controller Fan submenu

// When first starting the main fan, run it at full speed for the
// given number of milliseconds.  This gets the fan spinning reliably
// before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)
//#define FAN_KICKSTART_TIME 100

// Some coolers may require a non-zero "off" state.
//#define FAN_OFF_PWM  1

 * PWM Fan Scaling
 * Define the min/max speeds for PWM fans (as set with M106).
 * With these options the M106 0-255 value range is scaled to a subset
 * to ensure that the fan has enough power to spin, or to run lower
 * current fans with higher current. (e.g., 5V/12V fans with 12V/24V)
 * Value 0 always turns off the fan.
 * Define one or both of these to override the default 0-255 range.
//#define FAN_MIN_PWM 50
//#define FAN_MAX_PWM 128

 * FAST PWM FAN Settings
 * Use to change the FAST FAN PWM frequency (if enabled in Configuration.h)
 * Combinations of PWM Modes, prescale values and TOP resolutions are used internally to produce a
 * frequency as close as possible to the desired frequency.
 * FAST_PWM_FAN_FREQUENCY [undefined by default]
 *   Set this to your desired frequency.
 *   If left undefined this defaults to F = F_CPU/(2*255*1)
 *   i.e., F = 31.4kHz on 16MHz microcontrollers or F = 39.2kHz on 20MHz microcontrollers.
 *   These defaults are the same as with the old FAST_PWM_FAN implementation - no migration is required
 *   NOTE: Setting very low frequencies (< 10 Hz) may result in unexpected timer behavior.
 * USE_OCR2A_AS_TOP [undefined by default]
 *   Boards that use TIMER2 for PWM have limitations resulting in only a few possible frequencies on TIMER2:
 *   16MHz MCUs: [62.5KHz, 31.4KHz (default), 7.8KHz, 3.92KHz, 1.95KHz, 977Hz, 488Hz, 244Hz, 60Hz, 122Hz, 30Hz]
 *   20MHz MCUs: [78.1KHz, 39.2KHz (default), 9.77KHz, 4.9KHz, 2.44KHz, 1.22KHz, 610Hz, 305Hz, 153Hz, 76Hz, 38Hz]
 *   A greater range can be achieved by enabling USE_OCR2A_AS_TOP. But note that this option blocks the use of
 *   PWM on pin OC2A. Only use this option if you don't need PWM on 0C2A. (Check your schematic.)
 *   USE_OCR2A_AS_TOP sacrifices duty cycle control resolution to achieve this broader range of frequencies.
  //#define FAST_PWM_FAN_FREQUENCY 31400
  //#define USE_OCR2A_AS_TOP

// @section extruder

 * Extruder cooling fans
 * Extruder auto fans automatically turn on when their extruders'
 * temperatures go above EXTRUDER_AUTO_FAN_TEMPERATURE.
 * Your board's pins file specifies the recommended pins. Override those here
 * or set to -1 to disable completely.
 * Multiple extruders can be assigned to the same pin in which case
 * the fan will turn on when any selected extruder is above the threshold.
#define E0_AUTO_FAN_PIN -1
#define E1_AUTO_FAN_PIN -1
#define E2_AUTO_FAN_PIN -1
#define E3_AUTO_FAN_PIN -1
#define E4_AUTO_FAN_PIN -1
#define E5_AUTO_FAN_PIN -1
#define E6_AUTO_FAN_PIN -1
#define E7_AUTO_FAN_PIN -1

#define EXTRUDER_AUTO_FAN_SPEED 255   // 255 == full speed

 * Part-Cooling Fan Multiplexer
 * This feature allows you to digitally multiplex the fan output.
 * The multiplexer is automatically switched at tool-change.
 * Set FANMUX[012]_PINs below for up to 2, 4, or 8 multiplexed fans.
#define FANMUX0_PIN -1
#define FANMUX1_PIN -1
#define FANMUX2_PIN -1

 * M355 Case Light on-off / brightness
  //#define CASE_LIGHT_PIN 4                  // Override the default pin if needed
  #define INVERT_CASE_LIGHT false             // Set true if Case Light is ON when pin is LOW
  #define CASE_LIGHT_DEFAULT_ON true          // Set default power-up state on
  #define CASE_LIGHT_DEFAULT_BRIGHTNESS 105   // Set default power-up brightness (0-255, requires PWM pin)
  //#define CASE_LIGHT_MAX_PWM 128            // Limit pwm
  //#define CASE_LIGHT_MENU                   // Add Case Light options to the LCD menu
  //#define CASE_LIGHT_NO_BRIGHTNESS          // Disable brightness control. Enable for non-PWM lighting.
  //#define CASE_LIGHT_USE_NEOPIXEL           // Use NeoPixel LED as case light, requires NEOPIXEL_LED.
    #define CASE_LIGHT_NEOPIXEL_COLOR { 255, 255, 255, 255 } // { Red, Green, Blue, White }

// @section homing

// If you want endstops to stay on (by default) even when not homing
// enable this option. Override at any time with M120, M121.

// @section extras

//#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats.

// Employ an external closed loop controller. Override pins here if needed.
  //#define CLOSED_LOOP_ENABLE_PIN        -1

 * Dual Steppers / Dual Endstops
 * This section will allow you to use extra E drivers to drive a second motor for X, Y, or Z axes.
 * For example, set X_DUAL_STEPPER_DRIVERS setting to use a second motor. If the motors need to
 * spin in opposite directions set INVERT_X2_VS_X_DIR. If the second motor needs its own endstop
 * set X_DUAL_ENDSTOPS. This can adjust for "racking." Use X2_USE_ENDSTOP to set the endstop plug
 * that should be used for the second endstop. Extra endstops will appear in the output of 'M119'.
 * Use X_DUAL_ENDSTOP_ADJUSTMENT to adjust for mechanical imperfection. After homing both motors
 * this offset is applied to the X2 motor. To find the offset home the X axis, and measure the error
 * in X2. Dual endstop offsets can be set at runtime with 'M666 X<offset> Y<offset> Z<offset>'.

  #define INVERT_X2_VS_X_DIR true   // Set 'true' if X motors should rotate in opposite directions
  //#define X_DUAL_ENDSTOPS
    #define X2_USE_ENDSTOP _XMAX_
    #define X2_ENDSTOP_ADJUSTMENT  0

  #define INVERT_Y2_VS_Y_DIR true   // Set 'true' if Y motors should rotate in opposite directions
  //#define Y_DUAL_ENDSTOPS
    #define Y2_USE_ENDSTOP _YMAX_
    #define Y2_ENDSTOP_ADJUSTMENT  0

// For Z set the number of stepper drivers
#define NUM_Z_STEPPER_DRIVERS 1   // (1-4) Z options change based on how many

  //#define Z_MULTI_ENDSTOPS
    #define Z2_USE_ENDSTOP          _XMAX_
    #define Z2_ENDSTOP_ADJUSTMENT   0
      #define Z3_USE_ENDSTOP        _YMAX_
      #define Z3_ENDSTOP_ADJUSTMENT 0
      #define Z4_USE_ENDSTOP        _ZMAX_
      #define Z4_ENDSTOP_ADJUSTMENT 0

 * Dual X Carriage
 * This setup has two X carriages that can move independently, each with its own hotend.
 * The carriages can be used to print an object with two colors or materials, or in
 * "duplication mode" it can print two identical or X-mirrored objects simultaneously.
 * The inactive carriage is parked automatically to prevent oozing.
 * X1 is the left carriage, X2 the right. They park and home at opposite ends of the X axis.
 * By default the X2 stepper is assigned to the first unused E plug on the board.
 * The following Dual X Carriage modes can be selected with M605 S<mode>:
 *   0 : (FULL_CONTROL) The slicer has full control over both X-carriages and can achieve optimal travel
 *       results as long as it supports dual X-carriages. (M605 S0)
 *   1 : (AUTO_PARK) The firmware automatically parks and unparks the X-carriages on tool-change so
 *       that additional slicer support is not required. (M605 S1)
 *   2 : (DUPLICATION) The firmware moves the second X-carriage and extruder in synchronization with
 *       the first X-carriage and extruder, to print 2 copies of the same object at the same time.
 *       Set the constant X-offset and temperature differential with M605 S2 X[offs] R[deg] and
 *       follow with M605 S2 to initiate duplicated movement.
 *   3 : (MIRRORED) Formbot/Vivedino-inspired mirrored mode in which the second extruder duplicates
 *       the movement of the first except the second extruder is reversed in the X axis.
 *       Set the initial X offset and temperature differential with M605 S2 X[offs] R[deg] and
 *       follow with M605 S3 to initiate mirrored movement.
  #define X1_MIN_POS X_MIN_POS   // Set to X_MIN_POS
  #define X1_MAX_POS X_BED_SIZE  // Set a maximum so the first X-carriage can't hit the parked second X-carriage
  #define X2_MIN_POS    80       // Set a minimum to ensure the  second X-carriage can't hit the parked first X-carriage
  #define X2_MAX_POS   353       // Set this to the distance between toolheads when both heads are homed
  #define X2_HOME_DIR    1       // Set to 1. The second X-carriage always homes to the maximum endstop position
  #define X2_HOME_POS X2_MAX_POS // Default X2 home position. Set to X2_MAX_POS.
                      // However: In this mode the HOTEND_OFFSET_X value for the second extruder provides a software
                      // override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
                      // without modifying the firmware (through the "M218 T1 X???" command).
                      // Remember: you should set the second extruder x-offset to 0 in your slicer.

  // This is the default power-up mode which can be later using M605.

  // Default x offset in duplication mode (typically set to half print bed width)

// Activate a solenoid on the active extruder with M380. Disable all with M381.
// Define SOL0_PIN, SOL1_PIN, etc., for each extruder that has a solenoid.
//#define EXT_SOLENOID

// @section homing

 * Homing Procedure
 * Homing (G28) does an indefinite move towards the endstops to establish
 * the position of the toolhead relative to the workspace.

//#define SENSORLESS_BACKOFF_MM  { 2, 2 }     // (mm) Backoff from endstops before sensorless homing

#define HOMING_BUMP_MM      { 5, 5, 2 }       // (mm) Backoff from endstops after first bump
#define HOMING_BUMP_DIVISOR { 2, 2, 4 }       // Re-Bump Speed Divisor (Divides the Homing Feedrate)

//#define HOMING_BACKOFF_POST_MM { 2, 2, 2 }  // (mm) Backoff from endstops after homing

#define QUICK_HOME                            // If G28 contains XY do a diagonal move first
//#define HOME_Y_BEFORE_X                     // If G28 contains XY home Y before X
//#define CODEPENDENT_XY_HOMING               // If X/Y can't home without homing Y/X first

// @section bltouch

   * Either: Use the defaults (recommended) or: For special purposes, use the following DEFINES
   * Do not activate settings that the probe might not understand. Clones might misunderstand
   * advanced commands.
   * Note: If the probe is not deploying, do a "Reset" and "Self-Test" and then check the
   *       wiring of the BROWN, RED and ORANGE wires.
   * Note: If the trigger signal of your probe is not being recognized, it has been very often
   *       because the BLACK and WHITE wires needed to be swapped. They are not "interchangeable"
   *       like they would be with a real switch. So please check the wiring first.
   * Settings for all BLTouch and clone probes:

  // Safety: The probe needs time to recognize the command.
  //         Minimum command delay (ms). Enable and increase if needed.
  //#define BLTOUCH_DELAY 500

   * Settings for BLTOUCH Classic 1.2, 1.3 or BLTouch Smart 1.0, 2.0, 2.2, 3.0, 3.1, and most clones:

  // Feature: Switch into SW mode after a deploy. It makes the output pulse longer. Can be useful
  //          in special cases, like noisy or filtered input configurations.

   * Settings for BLTouch Smart 3.0 and 3.1
   * Summary:
   *   - Voltage modes: 5V and OD (open drain - "logic voltage free") output modes
   *   - High-Speed mode
   *   - Disable LCD voltage options

   * Danger: Don't activate 5V mode unless attached to a 5V-tolerant controller!
   * V3.0 or 3.1: Set default mode to 5V mode at Marlin startup.
   * If disabled, OD mode is the hard-coded default on 3.0
   * On startup, Marlin will compare its eeprom to this value. If the selected mode
   * differs, a mode set eeprom write will be completed at initialization.
   * Use the option below to force an eeprom write to a V3.1 probe regardless.
  //#define BLTOUCH_SET_5V_MODE

   * Safety: Activate if connecting a probe with an unknown voltage mode.
   * V3.0: Set a probe into mode selected above at Marlin startup. Required for 5V mode on 3.0
   * V3.1: Force a probe with unknown mode into selected mode at Marlin startup ( = Probe EEPROM write )
   * To preserve the life of the probe, use this once then turn it off and re-flash.

   * Use "HIGH SPEED" mode for probing.
   * Danger: Disable if your probe sometimes fails. Only suitable for stable well-adjusted systems.
   * This feature was designed for Delta's with very fast Z moves however higher speed cartesians may function
   * If the machine cannot raise the probe fast enough after a trigger, it may enter a fault state.
  //#define BLTOUCH_HS_MODE

  // Safety: Enable voltage mode settings in the LCD menu.

#endif // BLTOUCH

// @section extras

 * Z Steppers Auto-Alignment
 * Add the G34 command to align multiple Z steppers using a bed probe.
  // Define probe X and Y positions for Z1, Z2 [, Z3 [, Z4]]
  // If not defined, probe limits will be used.
  // Override with 'M422 S<index> X<pos> Y<pos>'
  //#define Z_STEPPER_ALIGN_XY { {  10, 190 }, { 100,  10 }, { 190, 190 } }

   * Orientation for the automatically-calculated probe positions.
   * Override Z stepper align points with 'M422 S<index> X<pos> Y<pos>'
   * 2 Steppers:  (0)     (1)
   *               |       |   2   |
   *               | 1   2 |       |
   *               |       |   1   |
   * 3 Steppers:  (0)     (1)     (2)     (3)
   *               |   3   | 1     | 2   1 |     2 |
   *               |       |     3 |       | 3     |
   *               | 1   2 | 2     |   3   |     1 |
   * 4 Steppers:  (0)     (1)     (2)     (3)
   *               | 4   3 | 1   4 | 2   1 | 3   2 |
   *               |       |       |       |       |
   *               | 1   2 | 2   3 | 3   4 | 4   1 |

  // Provide Z stepper positions for more rapid convergence in bed alignment.
  // Requires triple stepper drivers (i.e., set NUM_Z_STEPPER_DRIVERS to 3)
    // Define Stepper XY positions for Z1, Z2, Z3 corresponding to
    // the Z screw positions in the bed carriage.
    // Define one position per Z stepper in stepper driver order.
    #define Z_STEPPER_ALIGN_STEPPER_XY { { 210.7, 102.5 }, { 152.6, 220.0 }, { 94.5, 102.5 } }
    // Amplification factor. Used to scale the correction step up or down in case
    // the stepper (spindle) position is farther out than the test point.
    #define Z_STEPPER_ALIGN_AMP 1.0       // Use a value > 1.0 NOTE: This may cause instability!

  // On a 300mm bed a 5% grade would give a misalignment of ~1.5cm
  #define G34_MAX_GRADE              5    // (%) Maximum incline that G34 will handle
  #define Z_STEPPER_ALIGN_ITERATIONS 3    // Number of iterations to apply during alignment
  #define Z_STEPPER_ALIGN_ACC        0.02 // Stop iterating early if the accuracy is better than this
  #define RESTORE_LEVELING_AFTER_G34      // Restore leveling after G34 is done?
  // After G34, re-home Z (G28 Z) or just calculate it from the last probe heights?
  // Re-homing might be more precise in reproducing the actual 'G28 Z' homing height, especially on an uneven bed.
  #define HOME_AFTER_G34

// Add the G35 command to read bed corners to help adjust screws. Requires a bed probe.

  // Define positions for probing points, use the hotend as reference not the sensor.
  #define TRAMMING_POINT_XY { {  20, 20 }, { 200,  20 }, { 200, 200 }, { 20, 200 } }

  // Define positions names for probing points.
  #define TRAMMING_POINT_NAME_1 "Front-Left"
  #define TRAMMING_POINT_NAME_2 "Front-Right"
  #define TRAMMING_POINT_NAME_3 "Back-Right"
  #define TRAMMING_POINT_NAME_4 "Back-Left"

  #define RESTORE_LEVELING_AFTER_G35    // Enable to restore leveling setup after operation
  //#define REPORT_TRAMMING_MM          // Report Z deviation (mm) for each point relative to the first
  //#define ASSISTED_TRAMMING_MENU_ITEM // Add a menu item for Assisted Tramming

   * Screw thread:
   *   M3: 30 = Clockwise, 31 = Counter-Clockwise
   *   M4: 40 = Clockwise, 41 = Counter-Clockwise
   *   M5: 50 = Clockwise, 51 = Counter-Clockwise


// @section motion

#define AXIS_RELATIVE_MODES { false, false, false, false }

// Add a Duplicate option for well-separated conjoined nozzles

// By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.
#define INVERT_X_STEP_PIN false
#define INVERT_Y_STEP_PIN false
#define INVERT_Z_STEP_PIN false
#define INVERT_E_STEP_PIN false

 * Idle Stepper Shutdown
 * Set DISABLE_INACTIVE_? 'true' to shut down axis steppers after an idle period.
 * The Deactive Time can be overridden with M18 and M84. Set to 0 for No Timeout.
#define DISABLE_INACTIVE_Z true  // Set 'false' if the nozzle could fall onto your printed part!

// If the Nozzle or Bed falls when the Z stepper is disabled, set its resting position here.

//#define HOME_AFTER_DEACTIVATE  // Require rehoming after steppers are deactivated

// Default Minimum Feedrates for printing and travel moves
#define DEFAULT_MINIMUMFEEDRATE       0.0     // (mm/s) Minimum feedrate. Set with M205 S.
#define DEFAULT_MINTRAVELFEEDRATE     0.0     // (mm/s) Minimum travel feedrate. Set with M205 T.

// Minimum time that a segment needs to take as the buffer gets emptied
#define DEFAULT_MINSEGMENTTIME        20000   // (µs) Set with M205 B.

// Slow down the machine if the lookahead buffer is (by default) half full.
// Increase the slowdown divisor for larger buffer sizes.
#define SLOWDOWN

 * XY Frequency limit
 * Reduce resonance by limiting the frequency of small zigzag infill moves.
 * See
 * Use M201 F<freq> G<min%> to change limits at runtime.
//#define XY_FREQUENCY_LIMIT      10 // (Hz) Maximum frequency of small zigzag infill moves. Set with M201 F<hertz>.
  #define XY_FREQUENCY_MIN_PERCENT 5 // (percent) Minimum FR percentage to apply. Set with M201 G<min%>.

// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
// of the buffer and all stops. This should not be much greater than zero and should only be changed
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
#define MINIMUM_PLANNER_SPEED 0.05 // (mm/s)

// Backlash Compensation
// Adds extra movement to axes on direction-changes to account for backlash.
  // Define values for backlash distance and correction.
  // If BACKLASH_GCODE is enabled these values are the defaults.
  #define BACKLASH_DISTANCE_MM { 0, 0, 0 } // (mm)
  #define BACKLASH_CORRECTION    0.0       // 0.0 = no correction; 1.0 = full correction

  // Set BACKLASH_SMOOTHING_MM to spread backlash correction over multiple segments
  // to reduce print artifacts. (Enabling this is costly in memory and computation!)
  //#define BACKLASH_SMOOTHING_MM 3 // (mm)

  // Add runtime configuration and tuning of backlash values (M425)
  //#define BACKLASH_GCODE

    // Measure the Z backlash when probing (G29) and set with "M425 Z"

      // When measuring, the probe will move up to BACKLASH_MEASUREMENT_LIMIT
      // mm away from point of contact in BACKLASH_MEASUREMENT_RESOLUTION
      // increments while checking for the contact to be broken.
      #define BACKLASH_MEASUREMENT_LIMIT       0.5   // (mm)
      #define BACKLASH_MEASUREMENT_RESOLUTION  0.005 // (mm)

 * Automatic backlash, position and hotend offset calibration
 * Enable G425 to run automatic calibration using an electrically-
 * conductive cube, bolt, or washer mounted on the bed.
 * G425 uses the probe to touch the top and sides of the calibration object
 * on the bed and measures and/or correct positional offsets, axis backlash
 * and hotend offsets.
 * Note: HOTEND_OFFSET and CALIBRATION_OBJECT_CENTER must be set to within
 *       ±5mm of true values for G425 to succeed.

  //#define CALIBRATION_SCRIPT_PRE  "M117 Starting Auto-Calibration\nT0\nG28\nG12\nM117 Calibrating..."
  //#define CALIBRATION_SCRIPT_POST "M500\nM117 Calibration data saved"


  #define CALIBRATION_FEEDRATE_SLOW             60    // mm/min
  #define CALIBRATION_FEEDRATE_FAST           1200    // mm/min
  #define CALIBRATION_FEEDRATE_TRAVEL         3000    // mm/min

  // The following parameters refer to the conical section of the nozzle tip.
  #define CALIBRATION_NOZZLE_TIP_HEIGHT          1.0  // mm

  // Uncomment to enable reporting (required for "G425 V", but consumes PROGMEM).

  // The true location and dimension the cube/bolt/washer on the bed.
  #define CALIBRATION_OBJECT_CENTER     { 264.0, -22.0,  -2.0 } // mm
  #define CALIBRATION_OBJECT_DIMENSIONS {  10.0,  10.0,  10.0 } // mm

  // Comment out any sides which are unreachable by the probe. For best
  // auto-calibration results, all sides must be reachable.

  // Probing at the exact top center only works if the center is flat. If
  // probing on a screwhead or hollow washer, probe near the edges.

  // Define the pin to read during calibration
    //#define CALIBRATION_PIN -1            // Define here to override the default pin
    #define CALIBRATION_PIN_INVERTING false // Set to true to invert the custom pin

 * Adaptive Step Smoothing increases the resolution of multi-axis moves, particularly at step frequencies
 * below 1kHz (for AVR) or 10kHz (for ARM), where aliasing between axes in multi-axis moves causes audible
 * vibration and surface artifacts. The algorithm adapts to provide the best possible step smoothing at the
 * lowest stepping frequencies.

 * Custom Microstepping
 * Override as-needed for your setup. Up to 3 MS pins are supported.

// Microstep settings (Requires a board with pins named X_MS1, X_MS2, etc.)
#define MICROSTEP_MODES { 16, 16, 16, 16, 16, 16 } // [1,2,4,8,16]

 *  @section  stepper motor current
 *  Some boards have a means of setting the stepper motor current via firmware.
 *  The power on motor currents are set by:
 *                         known compatible chips: A4982
 *                         known compatible chips: AD5206
 *                         known compatible chips: MCP4728
 *                         known compatible chips: MCP4451, MCP4018
 *  Motor currents can also be set by M907 - M910 and by the LCD.
 *    M907 - applies to all.
 *    M909, M910 & LCD - only PRINTRBOARD_REVF & RIGIDBOARD_V2
//#define PWM_MOTOR_CURRENT { 1300, 1300, 1250 }          // Values in milliamps
//#define DIGIPOT_MOTOR_CURRENT { 135,135,135,135,135 }   // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
//#define DAC_MOTOR_CURRENT_DEFAULT { 70, 80, 90, 80 }    // Default drive percent - X, Y, Z, E axis

 * I2C-based DIGIPOTs (e.g., Azteeg X3 Pro)
//#define DIGIPOT_MCP4018             // Requires
//#define DIGIPOT_MCP4451

  // Actual motor currents in Amps. The number of entries must match DIGIPOT_I2C_NUM_CHANNELS.
  // These correspond to the physical drivers, so be mindful if the order is changed.
  #define DIGIPOT_I2C_MOTOR_CURRENTS { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 } // AZTEEG_X3_PRO

  //#define DIGIPOT_USE_RAW_VALUES    // Use DIGIPOT_MOTOR_CURRENT raw wiper values (instead of A4988 motor currents)

   * Common slave addresses:
   *                        A   (A shifted)   B   (B shifted)  IC
   * Smoothie              0x2C (0x58)       0x2D (0x5A)       MCP4451
   * AZTEEG_X3_PRO         0x2C (0x58)       0x2E (0x5C)       MCP4451
   * AZTEEG_X5_MINI        0x2C (0x58)       0x2E (0x5C)       MCP4451
   * AZTEEG_X5_MINI_WIFI         0x58              0x5C        MCP4451
   * MIGHTYBOARD_REVE      0x2F (0x5E)                         MCP4018
  //#define DIGIPOT_I2C_ADDRESS_A 0x2C  // Unshifted slave address for first DIGIPOT
  //#define DIGIPOT_I2C_ADDRESS_B 0x2D  // Unshifted slave address for second DIGIPOT

//=============================Additional Features===========================

// @section lcd

  #define MANUAL_FEEDRATE { 50*60, 50*60, 4*60, 2*60 } // (mm/min) Feedrates for manual moves along X, Y, Z, E from panel
  #define SHORT_MANUAL_Z_MOVE 0.025 // (mm) Smallest manual Z move (< 0.1mm)
    #define MANUAL_E_MOVES_RELATIVE // Display extruder move distance rather than "position"
    #define ULTIPANEL_FEEDMULTIPLY  // Encoder sets the feedrate multiplier on the Status Screen

// Change values more rapidly when the encoder is rotated faster
  #define ENCODER_10X_STEPS_PER_SEC   30  // (steps/s) Encoder rate for 10x speed
  #define ENCODER_100X_STEPS_PER_SEC  80  // (steps/s) Encoder rate for 100x speed

// Play a beep when the feedrate is changed from the Status Screen


  // Add Probe Z Offset calibration to the Z Probe Offsets menu
      #define PROBE_OFFSET_START -4.0   // Estimated nozzle-to-probe Z offset, plus a little extra

  // Include a page of printer information in the LCD Main Menu
  #define LCD_INFO_MENU
    //#define LCD_PRINTER_INFO_IS_BOOTSCREEN // Show bootscreen(s) instead of Printer Info pages

  // BACK menu items keep the highlight at the top

   * LED Control Menu
   * Add LED Control to the LCD menu
  //#define LED_CONTROL_MENU
    #define LED_COLOR_PRESETS                 // Enable the Preset Color menu option
    //#define NEO2_COLOR_PRESETS              // Enable a second NeoPixel Preset Color menu option
      #define LED_USER_PRESET_RED        255  // User defined RED value
      #define LED_USER_PRESET_GREEN      128  // User defined GREEN value
      #define LED_USER_PRESET_BLUE         0  // User defined BLUE value
      #define LED_USER_PRESET_WHITE      255  // User defined WHITE value
      #define LED_USER_PRESET_BRIGHTNESS 255  // User defined intensity
      //#define LED_USER_PRESET_STARTUP       // Have the printer display the user preset color on startup
      #define NEO2_USER_PRESET_RED        255  // User defined RED value
      #define NEO2_USER_PRESET_GREEN      128  // User defined GREEN value
      #define NEO2_USER_PRESET_BLUE         0  // User defined BLUE value
      #define NEO2_USER_PRESET_WHITE      255  // User defined WHITE value
      #define NEO2_USER_PRESET_BRIGHTNESS 255  // User defined intensity
      //#define NEO2_USER_PRESET_STARTUP       // Have the printer display the user preset color on startup for the second strip

#endif // HAS_LCD_MENU

// Scroll a longer status message into view

// On the Info Screen, display XY with one decimal place when possible

// The timeout (in ms) to return to the status screen from sub-menus
//#define LCD_TIMEOUT_TO_STATUS 15000

// Add an 'M73' G-code to set the current percentage

// Show the E position (filament used) during printing
//#define LCD_SHOW_E_TOTAL

  #define BOOTSCREEN_TIMEOUT 4000        // (ms) Total Duration to display the boot screen(s)

  //#define SHOW_REMAINING_TIME       // Display estimated time to completion
    //#define USE_M73_REMAINING_TIME  // Use remaining time from M73 command instead of estimation
    //#define ROTATE_PROGRESS_DISPLAY // Display (P)rogress, (E)lapsed, and (R)emaining time

    //#define PRINT_PROGRESS_SHOW_DECIMALS // Show progress with decimal digits

    //#define LCD_PROGRESS_BAR            // Show a progress bar on HD44780 LCDs for SD printing
      #define PROGRESS_BAR_BAR_TIME 2000  // (ms) Amount of time to show the bar
      #define PROGRESS_BAR_MSG_TIME 3000  // (ms) Amount of time to show the status message
      #define PROGRESS_MSG_EXPIRE   0     // (ms) Amount of time to retain the status message (0=forever)
      //#define PROGRESS_MSG_ONCE         // Show the message for MSG_TIME then clear it
      //#define LCD_PROGRESS_BAR_TEST     // Add a menu item to test the progress bar


  // The standard SD detect circuit reads LOW when media is inserted and HIGH when empty.
  // Enable this option and set to HIGH if your SD cards are incorrectly detected.

  //#define SDCARD_READONLY                 // Read-only SD card (to save over 2K of flash)

  #define SD_PROCEDURE_DEPTH 1              // Increase if you need more nested M32 calls

  #define SD_FINISHED_STEPPERRELEASE true   // Disable steppers when SD Print is finished
  #define SD_FINISHED_RELEASECOMMAND "M84"  // Use "M84XYE" to keep Z enabled so your bed stays in place

  // Reverse SD sort to show "more recent" files first, according to the card's FAT.
  // Since the FAT gets out of order with usage, SDCARD_SORT_ALPHA is recommended.

  #define SD_MENU_CONFIRM_START             // Confirm the selected SD file before printing

  //#define MENU_ADDAUTOSTART               // Add a menu option to run auto#.g files

  #define EVENT_GCODE_SD_ABORT "G28XY"      // G-code to run on SD Abort Print (e.g., "G28XY" or "G27")

    #define PE_LEDS_COMPLETED_TIME  (30*60) // (seconds) Time to keep the LED "done" color before restoring normal illumination

   * Continue after Power-Loss (Creality3D)
   * Store the current state to the SD Card at the start of each layer
   * during SD printing. If the recovery file is found at boot time, present
   * an option on the LCD screen to continue the print from the last-known
   * point in the file.
    #define PLR_ENABLED_DEFAULT   false // Power Loss Recovery enabled by default. (Set with 'M413 Sn' & M500)
    //#define BACKUP_POWER_SUPPLY       // Backup power / UPS to move the steppers on power loss
    //#define POWER_LOSS_RECOVER_ZHOME  // Z homing is needed for proper recovery. 99.9% of the time this should be disabled!
    //#define POWER_LOSS_ZRAISE       2 // (mm) Z axis raise on resume (on power loss with UPS)
    //#define POWER_LOSS_PIN         44 // Pin to detect power loss. Set to -1 to disable default pin on boards without module.
    //#define POWER_LOSS_STATE     HIGH // State of pin indicating power loss
    //#define POWER_LOSS_PULL           // Set pullup / pulldown as appropriate
    //#define POWER_LOSS_PURGE_LEN   20 // (mm) Length of filament to purge on resume
    //#define POWER_LOSS_RETRACT_LEN 10 // (mm) Length of filament to retract on fail. Requires backup power.

    // Without a POWER_LOSS_PIN the following option helps reduce wear on the SD card,
    // especially with "vase mode" printing. Set too high and vases cannot be continued.
    #define POWER_LOSS_MIN_Z_CHANGE 0.05 // (mm) Minimum Z change before saving power-loss data

   * Sort SD file listings in alphabetical order.
   * With this option enabled, items on SD cards will be sorted
   * by name for easier navigation.
   * By default...
   *  - Use the slowest -but safest- method for sorting.
   *  - Folders are sorted to the top.
   *  - The sort key is statically allocated.
   *  - No added G-code (M34) support.
   *  - 40 item sorting limit. (Items after the first 40 are unsorted.)
   * SD sorting uses static allocation (as set by SDSORT_LIMIT), allowing the
   * compiler to calculate the worst-case usage and throw an error if the SRAM
   * limit is exceeded.
   *  - SDSORT_USES_RAM provides faster sorting via a static directory buffer.
   *  - SDSORT_USES_STACK does the same, but uses a local stack-based buffer.
   *  - SDSORT_CACHE_NAMES will retain the sorted file listing in RAM. (Expensive!)
   *  - SDSORT_DYNAMIC_RAM only uses RAM when the SD menu is visible. (Use with caution!)

  // SD Card Sorting options
    #define SDSORT_LIMIT       40     // Maximum number of sorted items (10-256). Costs 27 bytes each.
    #define FOLDER_SORTING     -1     // -1=above  0=none  1=below
    #define SDSORT_GCODE       false  // Allow turning sorting on/off with LCD and M34 G-code.
    #define SDSORT_USES_RAM    true  // Pre-allocate a static array for faster pre-sorting.
    #define SDSORT_USES_STACK  false  // Prefer the stack for pre-sorting to give back some SRAM. (Negated by next 2 options.)
    #define SDSORT_CACHE_NAMES true  // Keep sorted items in RAM longer for speedy performance. Most expensive option.
    #define SDSORT_DYNAMIC_RAM false  // Use dynamic allocation (within SD menus). Least expensive option. Set SDSORT_LIMIT before use!
    #define SDSORT_CACHE_VFATS 2      // Maximum number of 13-byte VFAT entries to use for sorting.
                                      // Note: Only affects SCROLL_LONG_FILENAMES with SDSORT_CACHE_NAMES but not SDSORT_DYNAMIC_RAM.

  // This allows hosts to request long names for files and folders with M33

  // Enable this option to scroll long filenames in the SD card menu

  // Leave the heaters on after Stop Print (not recommended!)

   * This option allows you to abort SD printing when any endstop is triggered.
   * This feature must be enabled with "M540 S1" or from the LCD menu.
   * To have any effect, endstops must be enabled during SD printing.

   * This option makes it easier to print the same SD Card file again.
   * On print completion the LCD Menu will open with the file selected.
   * You can just click to start the print, or navigate elsewhere.

   * Auto-report SdCard status with M27 S<seconds>

   * Support for USB thumb drives using an Arduino USB Host Shield or
   * equivalent MAX3421E breakout board. The USB thumb drive will appear
   * to Marlin as an SD card.
   * The MAX3421E can be assigned the same pins as the SD card reader, with
   * the following pin mapping:
   *    INT              --> SD_DETECT_PIN [1]
   *    SS               --> SDSS
   * [1] On AVR an interrupt-capable pin is best for UHS3 compatibility.
    #define USB_CS_PIN    SDSS

     * USB Host Shield Library
     * - UHS2 uses no interrupts and has been production-tested
     *   on a LulzBot TAZ Pro with a 32-bit Archim board.
     * - UHS3 is newer code with better USB compatibility. But it
     *   is less tested and is known to interfere with Servos.
     *   [1] This requires USB_INTR_PIN to be interrupt-capable.
    //#define USE_UHS3_USB

   * When using a bootloader that supports SD-Firmware-Flashing,
   * add a menu item to activate SD-FW-Update on the next reboot.
   * Requires ATMEGA2560 (Arduino Mega)
   * Tested with this bootloader:

  // Add an optimized binary file transfer mode, initiated with 'M28 B1'

   * Set this option to one of the following (or the board's defaults apply):
   *           LCD - Use the SD drive in the external LCD controller.
   *       ONBOARD - Use the SD drive on the control board. (No SD_DETECT_PIN. M21 to init.)
   *  CUSTOM_CABLE - Use a custom cable to access the SD (as defined in a pins file).
   * :[ 'LCD', 'ONBOARD', 'CUSTOM_CABLE' ]

#endif // SDSUPPORT

 * By default an onboard SD card reader may be shared as a USB mass-
 * storage device. This option hides the SD card from the host PC.
//#define NO_SD_HOST_DRIVE   // Disable SD Card access over USB (for security).

 * Additional options for Graphical Displays
 * Use the optimizations here to improve printing performance,
 * which can be adversely affected by graphical display drawing,
 * especially when doing several short moves, and when printing
 * on DELTA and SCARA machines.
 * Some of these options may result in the display lagging behind
 * controller events, as there is a trade-off between reliable
 * printing performance versus fast display updates.
  // Show SD percentage next to the progress bar
  //#define DOGM_SD_PERCENT

  // Save many cycles by drawing a hollow frame or no frame on the Info Screen
  //#define XYZ_NO_FRAME

  // Enable to save many cycles by drawing a hollow frame on Menu Screens

  // A bigger font is available for edit items. Costs 3120 bytes of PROGMEM.
  // Western only. Not available for Cyrillic, Kana, Turkish, Greek, or Chinese.
  //#define USE_BIG_EDIT_FONT

  // A smaller font may be used on the Info Screen. Costs 2434 bytes of PROGMEM.
  // Western only. Not available for Cyrillic, Kana, Turkish, Greek, or Chinese.

  // Swap the CW/CCW indicators in the graphics overlay

   * ST7920-based LCDs can emulate a 16 x 4 character display using
   * the ST7920 character-generator for very fast screen updates.
   * Enable LIGHTWEIGHT_UI to use this special display mode.
   * Since LIGHTWEIGHT_UI has limited space, the position and status
   * message occupy the same line. Set STATUS_EXPIRE_SECONDS to the
   * length of time to display the status message before clearing.
   * Set STATUS_EXPIRE_SECONDS to zero to never clear the status.
   * This will prevent position updates from being displayed.
  #if ENABLED(U8GLIB_ST7920)
    // Enable this option and reduce the value to optimize screen updates.
    // The normal delay is 10µs. Use the lowest value that still gives a reliable display.
    //#define DOGM_SPI_DELAY_US 5

    //#define LIGHTWEIGHT_UI
      #define STATUS_EXPIRE_SECONDS 20

   * Status (Info) Screen customizations
   * These options may affect code size and screen render time.
   * Custom status screens can forcibly override these settings.
  //#define STATUS_COMBINE_HEATERS    // Use combined heater images instead of separate ones
  //#define STATUS_HOTEND_NUMBERLESS  // Use plain hotend icons instead of numbered ones (with 2+ hotends)
  #define STATUS_HOTEND_INVERTED      // Show solid nozzle bitmaps when heating (Requires STATUS_HOTEND_ANIM)
  #define STATUS_HOTEND_ANIM          // Use a second bitmap to indicate hotend heating
  #define STATUS_BED_ANIM             // Use a second bitmap to indicate bed heating
  #define STATUS_CHAMBER_ANIM         // Use a second bitmap to indicate chamber heating
  //#define STATUS_CUTTER_ANIM        // Use a second bitmap to indicate spindle / laser active
  //#define STATUS_ALT_BED_BITMAP     // Use the alternative bed bitmap
  //#define STATUS_ALT_FAN_BITMAP     // Use the alternative fan bitmap
  //#define STATUS_FAN_FRAMES 3       // :[0,1,2,3,4] Number of fan animation frames
  //#define STATUS_HEAT_PERCENT       // Show heating in a progress bar
  //#define BOOT_MARLIN_LOGO_SMALL    // Show a smaller Marlin logo on the Boot Screen (saving 399 bytes of flash)
  //#define BOOT_MARLIN_LOGO_ANIMATED // Animated Marlin logo. Costs ~‭3260 (or ~940) bytes of PROGMEM.

  // Frivolous Game Options
  //#define MARLIN_SNAKE
  //#define GAMES_EASTER_EGG          // Add extra blank lines above the "Games" sub-menu


// Additional options for DGUS / DWIN displays
  #define LCD_SERIAL_PORT 3
  #define LCD_BAUDRATE 115200

  #define DGUS_RX_BUFFER_SIZE 128
  #define DGUS_TX_BUFFER_SIZE 48
  //#define SERIAL_STATS_RX_BUFFER_OVERRUNS  // Fix Rx overrun situation (Currently only for AVR)

  #define DGUS_UPDATE_INTERVAL_MS  500    // (ms) Interval between automatic screen updates

    #define DGUS_PRINT_FILENAME           // Display the filename during printing
    #define DGUS_PREHEAT_UI               // Display a preheat screen during heatup

      //#define DGUS_UI_MOVE_DIS_OPTION   // Disabled by default for UI_FYSETC
      #define DGUS_UI_MOVE_DIS_OPTION     // Enabled by default for UI_HIPRECY

      #define DGUS_FILAMENT_LOAD_LENGTH_PER_TIME 0.5 // (mm) Adjust in proportion to DGUS_UPDATE_INTERVAL_MS

    #define DGUS_UI_WAITING               // Show a "waiting" screen between some screens
      #define DGUS_UI_WAITING_STATUS 10
      #define DGUS_UI_WAITING_STATUS_PERIOD 8 // Increase to slower waiting status looping
#endif // HAS_DGUS_LCD

// Touch UI for the FTDI Embedded Video Engine (EVE)
  // Display board used
  //#define LCD_FTDI_VM800B35A        // FTDI 3.5" with FT800 (320x240)
  //#define LCD_4DSYSTEMS_4DLCD_FT843 // 4D Systems 4.3" (480x272)
  //#define LCD_HAOYU_FT800CB         // Haoyu with 4.3" or 5" (480x272)
  //#define LCD_HAOYU_FT810CB         // Haoyu with 5" (800x480)
  //#define LCD_ALEPHOBJECTS_CLCD_UI  // Aleph Objects Color LCD UI
  //#define LCD_FYSETC_TFT81050       // FYSETC with 5" (800x480)

  // Correct the resolution if not using the stock TFT panel.
  //#define TOUCH_UI_320x240
  //#define TOUCH_UI_480x272
  //#define TOUCH_UI_800x480

  // Mappings for boards with a standard RepRapDiscount Display connector
  //#define AO_EXP1_PINMAP      // AlephObjects CLCD UI EXP1 mapping
  //#define AO_EXP2_PINMAP      // AlephObjects CLCD UI EXP2 mapping
  //#define CR10_TFT_PINMAP     // Rudolph Riedel's CR10 pin mapping
  //#define S6_TFT_PINMAP       // FYSETC S6 pin mapping
  //#define F6_TFT_PINMAP       // FYSETC F6 pin mapping

  //#define OTHER_PIN_LAYOUT  // Define pins manually below
    // Pins for CS and MOD_RESET (PD) must be chosen
    #define CLCD_MOD_RESET  9
    #define CLCD_SPI_CS    10

    // If using software SPI, specify pins for SCLK, MOSI, MISO
    //#define CLCD_USE_SOFT_SPI
      #define CLCD_SOFT_SPI_MOSI 11
      #define CLCD_SOFT_SPI_MISO 12
      #define CLCD_SOFT_SPI_SCLK 13

  // Display Orientation. An inverted (i.e. upside-down) display
  // is supported on the FT800. The FT810 and beyond also support
  // portrait and mirrored orientations.

  // UTF8 processing and rendering.
  // Unsupported characters are shown as '?'.
  //#define TOUCH_UI_USE_UTF8
    // Western accents support. These accented characters use
    // combined bitmaps and require relatively little storage.
      // Additional character groups. These characters require
      // full bitmaps and take up considerable storage:
      //#define TOUCH_UI_UTF8_SUPERSCRIPTS  // ¹ ² ³
      //#define TOUCH_UI_UTF8_COPYRIGHT     // © ®
      //#define TOUCH_UI_UTF8_GERMANIC      // ß
      //#define TOUCH_UI_UTF8_SCANDINAVIAN  // Æ Ð Ø Þ æ ð ø þ
      //#define TOUCH_UI_UTF8_PUNCTUATION   // « » ¿ ¡
      //#define TOUCH_UI_UTF8_CURRENCY      // ¢ £ ¤ ¥
      //#define TOUCH_UI_UTF8_ORDINALS      // º ª
      //#define TOUCH_UI_UTF8_MATHEMATICS   // ± × ÷
      //#define TOUCH_UI_UTF8_FRACTIONS     // ¼ ½ ¾
      //#define TOUCH_UI_UTF8_SYMBOLS       // µ ¶ ¦ § ¬

  // Use a smaller font when labels don't fit buttons

  // Allow language selection from menu at run-time (otherwise use LCD_LANGUAGE)
  //#define LCD_LANGUAGE_1 en
  //#define LCD_LANGUAGE_2 fr
  //#define LCD_LANGUAGE_3 de
  //#define LCD_LANGUAGE_4 es
  //#define LCD_LANGUAGE_5 it

  // Use a numeric passcode for "Screen lock" keypad.
  // (recommended for smaller displays)

  // Output extra debug info for Touch UI events
  //#define TOUCH_UI_DEBUG

  // Developer menu (accessed by touching "About Printer" copyright text)

// Classic UI Options
  //#define TFT_MARLINUI_COLOR 0xFFFF // White
  //#define TFT_MARLINBG_COLOR 0x0000 // Black
  //#define TFT_DISABLED_COLOR 0x0003 // Almost black
  //#define TFT_BTCANCEL_COLOR 0xF800 // Red
  //#define TFT_BTARROWS_COLOR 0xDEE6 // 11011 110111 00110 Yellow
  //#define TFT_BTOKMENU_COLOR 0x145F // 00010 100010 11111 Cyan

// ADC Button Debounce
  #define ADC_BUTTON_DEBOUNCE_DELAY 16  // Increase if buttons bounce or repeat too fast

// @section safety

 * The watchdog hardware timer will do a reset and disable all outputs
 * if the firmware gets too overloaded to read the temperature sensors.
 * If you find that watchdog reboot causes your AVR board to hang forever,
 * enable WATCHDOG_RESET_MANUAL to use a custom timer instead of WDTO.
 * NOTE: This method is less reliable as it can only catch hangups while
 * interrupts are enabled.

// @section lcd

 * Babystepping enables movement of the axes by tiny increments without changing
 * the current position values. This feature is used primarily to adjust the Z
 * axis in the first layer of a print in real-time.
 * Warning: Does not respect endstops!
  //#define INTEGRATED_BABYSTEPPING         // EXPERIMENTAL integration of babystepping into the Stepper ISR
  //#define BABYSTEP_ALWAYS_AVAILABLE       // Allow babystepping at all times (not just during movement).
  //#define BABYSTEP_XY                     // Also enable X/Y Babystepping. Not supported on DELTA!
  #define BABYSTEP_INVERT_Z false           // Change if Z babysteps should go the other way
  //#define BABYSTEP_MILLIMETER_UNITS       // Specify BABYSTEP_MULTIPLICATOR_(XY|Z) in mm instead of micro-steps
  #define BABYSTEP_MULTIPLICATOR_Z  1       // (steps or mm) Steps or millimeter distance for each Z babystep
  #define BABYSTEP_MULTIPLICATOR_XY 1       // (steps or mm) Steps or millimeter distance for each XY babystep

  #define DOUBLECLICK_FOR_Z_BABYSTEPPING    // Double-click on the Status Screen for Z Babystepping.
    #define DOUBLECLICK_MAX_INTERVAL 1250   // Maximum interval between clicks, in milliseconds.
                                            // Note: Extra time may be added to mitigate controller latency.
    //#define MOVE_Z_WHEN_IDLE              // Jump to the move Z menu on doubleclick when printer is idle.
      #define MOVE_Z_IDLE_MULTIPLICATOR 1   // Multiply 1mm by this factor for the move step size.

  //#define BABYSTEP_DISPLAY_TOTAL          // Display total babysteps since last G28

  //#define BABYSTEP_ZPROBE_OFFSET          // Combine M851 Z and Babystepping
    //#define BABYSTEP_HOTEND_Z_OFFSET      // For multiple hotends, babystep relative Z offsets
    //#define BABYSTEP_ZPROBE_GFX_OVERLAY   // Enable graphical overlay on Z-offset editor

// @section extruder

 * Linear Pressure Control v1.5
 * Assumption: advance [steps] = k * (delta velocity [steps/s])
 * K=0 means advance disabled.
 * NOTE: K values for LIN_ADVANCE 1.5 differ from earlier versions!
 * Set K around 0.22 for 3mm PLA Direct Drive with ~6.5cm between the drive gear and heatbreak.
 * Larger K values will be needed for flexible filament and greater distances.
 * If this algorithm produces a higher speed offset than the extruder can handle (compared to E jerk)
 * print acceleration will be reduced during the affected moves to keep within the limit.
 * See for full instructions.
  //#define EXTRA_LIN_ADVANCE_K // Enable for second linear advance constants
  #define LIN_ADVANCE_K 0.0    // Unit: mm compression per 1mm/s extruder speed
  //#define LA_DEBUG            // If enabled, this will generate debug information output over USB.
  #define EXPERIMENTAL_SCURVE   // Enable this option to permit S-Curve Acceleration

// @section leveling

 * Points to probe for all 3-point Leveling procedures.
 * Override if the automatically selected points are inadequate.
  //#define PROBE_PT_1_X 15
  //#define PROBE_PT_1_Y 180
  //#define PROBE_PT_2_X 15
  //#define PROBE_PT_2_Y 20
  //#define PROBE_PT_3_X 170
  //#define PROBE_PT_3_Y 20

 * Probing Margins
 * Override PROBING_MARGIN for each side of the build plate
 * Useful to get probe points to exact positions on targets or
 * to allow leveling to avoid plate clamps on only specific
 * sides of the bed. With NOZZLE_AS_PROBE negative values are
 * allowed, to permit probing outside the bed.
 * If you are replacing the prior *_PROBE_BED_POSITION options,
 * LEFT and FRONT values in most cases will map directly over
 * RIGHT and REAR would be the inverse such as
 * This will allow all positions to match at compilation, however
 * should the probe position be modified with M851XY then the
 * probe points will follow. This prevents any change from causing
 * the probe to be unable to reach any points.

  // Override the mesh area if the automatic (max) area is too large

 * Repeatedly attempt G29 leveling until it succeeds.
 * Stop after G29_MAX_RETRIES attempts.
  #define G29_MAX_RETRIES 3
  #define G29_HALT_ON_FAILURE
   * Specify the GCODE commands that will be executed when leveling succeeds,
   * between attempts, and after the maximum number of retries have been tried.
  #define G29_SUCCESS_COMMANDS "M117 Bed leveling done."
  #define G29_RECOVER_COMMANDS "M117 Probe failed. Rewiping.\nG28\nG12 P0 S12 T0"
  #define G29_FAILURE_COMMANDS "M117 Bed leveling failed.\nG0 Z10\nM300 P25 S880\nM300 P50 S0\nM300 P25 S880\nM300 P50 S0\nM300 P25 S880\nM300 P50 S0\nG4 S1"


 * Thermal Probe Compensation
 * Probe measurements are adjusted to compensate for temperature distortion.
 * Use G76 to calibrate this feature. Use M871 to set values manually.
 * For a more detailed explanation of the process see G76_M871.cpp.
  // Enable thermal first layer compensation using bed and probe temperatures

  // Add additional compensation depending on hotend temperature
  // Note: this values cannot be calibrated and have to be set manually
    // Park position to wait for probe cooldown
    #define PTC_PARK_POS   { 0, 0, 100 }

    // Probe position to probe and wait for probe to reach target temperature
    #define PTC_PROBE_POS  { 90, 100 }

    // Enable additional compensation using hotend temperature
    // Note: this values cannot be calibrated automatically but have to be set manually

    // Probe temperature calibration generates a table of values starting at PTC_SAMPLE_START
    // (e.g. 30), in steps of PTC_SAMPLE_RES (e.g. 5) with PTC_SAMPLE_COUNT (e.g. 10) samples.

    //#define PTC_SAMPLE_START  30.0f
    //#define PTC_SAMPLE_RES    5.0f
    //#define PTC_SAMPLE_COUNT  10U

    // Bed temperature calibration builds a similar table.

    //#define BTC_SAMPLE_START  60.0f
    //#define BTC_SAMPLE_RES    5.0f
    //#define BTC_SAMPLE_COUNT  10U

    // The temperature the probe should be at while taking measurements during bed temperature
    // calibration.
    //#define BTC_PROBE_TEMP 30.0f

    // Height above Z=0.0f to raise the nozzle. Lowering this can help the probe to heat faster.
    // Note: the Z=0.0f offset is determined by the probe offset which can be set using M851.
    //#define PTC_PROBE_HEATING_OFFSET 0.5f

    // Height to raise the Z-probe between heating and taking the next measurement. Some probes
    // may fail to untrigger if they have been triggered for a long time, which can be solved by
    // increasing the height the probe is raised to.
    //#define PTC_PROBE_RAISE 15U

    // If the probe is outside of the defined range, use linear extrapolation using the closest
    // point and the PTC_LINEAR_EXTRAPOLATION'th next point. E.g. if set to 4 it will use data[0]
    // and data[4] to perform linear extrapolation for values below PTC_SAMPLE_START.

// @section extras

// G60/G61 Position Save and Return
//#define SAVED_POSITIONS 1         // Each saved position slot costs 12 bytes

// G2/G3 Arc Support
//#define ARC_SUPPORT               // Disable this feature to save ~3226 bytes
  #define MM_PER_ARC_SEGMENT      1 // (mm) Length (or minimum length) of each arc segment
  //#define ARC_SEGMENTS_PER_R    1 // Max segment length, MM_PER = Min
  #define MIN_ARC_SEGMENTS       24 // Minimum number of segments in a complete circle
  //#define ARC_SEGMENTS_PER_SEC 50 // Use feedrate to choose segment length (with MM_PER_ARC_SEGMENT as the minimum)
  #define N_ARC_CORRECTION       25 // Number of interpolated segments between corrections
  //#define ARC_P_CIRCLES           // Enable the 'P' parameter to specify complete circles
  //#define CNC_WORKSPACE_PLANES    // Allow G2/G3 to operate in XY, ZX, or YZ planes
  //#define SF_ARC_FIX              // Enable only if using SkeinForge with "Arc Point" fillet procedure

// Support for G5 with XYZE destination and IJPQ offsets. Requires ~2666 bytes.

 * Direct Stepping
 * Comparable to the method used by Klipper, G6 direct stepping significantly
 * reduces motion calculations, increases top printing speeds, and results in
 * less step aliasing by calculating all motions in advance.
 * Preparing your G-code:

 * G38 Probe Target
 * This option adds G38.2 and G38.3 (probe towards target)
 * and optionally G38.4 and G38.5 (probe away from target).
 * Set MULTIPLE_PROBING for G38 to probe more than once.
//#define G38_PROBE_TARGET
  //#define G38_PROBE_AWAY        // Include G38.4 and G38.5 to probe away from target
  #define G38_MINIMUM_MOVE 0.0275 // (mm) Minimum distance that will produce a move.

// Moves (or segments) with fewer steps than this will be joined with the next move

 * Minimum delay before and after setting the stepper DIR (in ns)
 *     0 : No delay (Expect at least 10µS since one Stepper ISR must transpire)
 *    20 : Minimum for TMC2xxx drivers
 *   200 : Minimum for A4988 drivers
 *   400 : Minimum for A5984 drivers
 *   500 : Minimum for LV8729 drivers (guess, no info in datasheet)
 *   650 : Minimum for DRV8825 drivers
 *  1500 : Minimum for TB6600 drivers (guess, no info in datasheet)
 * 15000 : Minimum for TB6560 drivers (guess, no info in datasheet)
 * Override the default value based on the driver type set in Configuration.h.

 * Minimum stepper driver pulse width (in µs)
 *   0 : Smallest possible width the MCU can produce, compatible with TMC2xxx drivers
 *   0 : Minimum 500ns for LV8729, adjusted in stepper.h
 *   1 : Minimum for A4988 and A5984 stepper drivers
 *   2 : Minimum for DRV8825 stepper drivers
 *   3 : Minimum for TB6600 stepper drivers
 *  30 : Minimum for TB6560 stepper drivers
 * Override the default value based on the driver type set in Configuration.h.

 * Maximum stepping rate (in Hz) the stepper driver allows
 *  If undefined, defaults to 1MHz / (2 * MINIMUM_STEPPER_PULSE)
 *  5000000 : Maximum for TMC2xxx stepper drivers
 *  1000000 : Maximum for LV8729 stepper driver
 *  500000  : Maximum for A4988 stepper driver
 *  250000  : Maximum for DRV8825 stepper driver
 *  150000  : Maximum for TB6600 stepper driver
 *   15000  : Maximum for TB6560 stepper driver
 * Override the default value based on the driver type set in Configuration.h.
//#define MAXIMUM_STEPPER_RATE 250000

// @section temperature

// Control heater 0 and heater 1 in parallel.

//================================= Buffers =================================

// @section motion

// The number of linear moves that can be in the planner at once.
// The value of BLOCK_BUFFER_SIZE must be a power of 2 (e.g. 8, 16, 32)
  #define BLOCK_BUFFER_SIZE  8
  #define BLOCK_BUFFER_SIZE 16
  #define BLOCK_BUFFER_SIZE 16

// @section serial

// The ASCII buffer for serial input
#define MAX_CMD_SIZE 96
#define BUFSIZE 4

// Transmission to Host Buffer Size
// To save 386 bytes of PROGMEM (and TX_BUFFER_SIZE+3 bytes of RAM) set to 0.
// To buffer a simple "ok" you need 4 bytes.
// For ADVANCED_OK (M105) you need 32 bytes.
// For debug-echo: 128 bytes for the optimal speed.
// Other output doesn't need to be that speedy.
// :[0, 2, 4, 8, 16, 32, 64, 128, 256]
#define TX_BUFFER_SIZE 0

// Host Receive Buffer Size
// Without XON/XOFF flow control (see SERIAL_XON_XOFF below) 32 bytes should be enough.
// To use flow control, set this buffer size to at least 1024 bytes.
// :[0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
//#define RX_BUFFER_SIZE 1024

#if RX_BUFFER_SIZE >= 1024
  // Enable to have the controller send XON/XOFF control characters to
  // the host to signal the RX buffer is becoming full.
  //#define SERIAL_XON_XOFF

// Add M575 G-code to change the baud rate

  // Enable this option to collect and display the maximum
  // RX queue usage after transferring a file to SD.

  // Enable this option to collect and display the number
  // of dropped bytes after a file transfer to SD.

 * Emergency Command Parser
 * Add a low-level parser to intercept certain commands as they
 * enter the serial receive buffer, so they cannot be blocked.
 * Currently handles M108, M112, M410, M876
 * NOTE: Not yet implemented for all platforms.

// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds

// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK

// Printrun may have trouble receiving long strings all at once.
// This option inserts short delays between lines of serial output.

// For serial echo, the number of digits after the decimal point

// @section extras

 * Extra Fan Speed
 * Adds a secondary fan speed for each print-cooling fan.
 *   'M106 P<fan> T3-255' : Set a secondary speed for <fan>
 *   'M106 P<fan> T2'     : Use the set secondary speed
 *   'M106 P<fan> T1'     : Restore the previous fan speed

 * Firmware-based and LCD-controlled retract
 * Add G10 / G11 commands for automatic firmware-based retract / recover.
 * Use M207 and M208 to define parameters for retract / recover.
 * Use M209 to enable or disable auto-retract.
 * With auto-retract enabled, all G1 E moves within the set range
 * will be converted to firmware-based retract/recover moves.
 * Be sure to turn off auto-retract during filament change.
 * Note that M207 / M208 / M209 settings are saved to EEPROM.
//#define FWRETRACT
  #define FWRETRACT_AUTORETRACT           // Override slicer retractions
    #define MIN_AUTORETRACT 0.1           // (mm) Don't convert E moves under this length
    #define MAX_AUTORETRACT 10.0          // (mm) Don't convert E moves over this length
  #define RETRACT_LENGTH 3                // (mm) Default retract length (positive value)
  #define RETRACT_LENGTH_SWAP 13          // (mm) Default swap retract length (positive value)
  #define RETRACT_FEEDRATE 45             // (mm/s) Default feedrate for retracting
  #define RETRACT_ZRAISE 0                // (mm) Default retract Z-raise
  #define RETRACT_RECOVER_LENGTH 0        // (mm) Default additional recover length (added to retract length on recover)
  #define RETRACT_RECOVER_LENGTH_SWAP 0   // (mm) Default additional swap recover length (added to retract length on recover from toolchange)
  #define RETRACT_RECOVER_FEEDRATE 8      // (mm/s) Default feedrate for recovering from retraction
  #define RETRACT_RECOVER_FEEDRATE_SWAP 8 // (mm/s) Default feedrate for recovering from swap retraction
    //#define RETRACT_SYNC_MIXING         // Retract and restore all mixing steppers simultaneously

 * Universal tool change settings.
 * Applies to all types of extruders except where explicitly noted.
  // Z raise distance for tool-change, as needed for some extruders
  #define TOOLCHANGE_ZRAISE                 2 // (mm)
  //#define TOOLCHANGE_ZRAISE_BEFORE_RETRACT  // Apply raise before swap retraction (if enabled)
  //#define TOOLCHANGE_NO_RETURN              // Never return to previous position on tool-change
    //#define EVENT_GCODE_AFTER_TOOLCHANGE "G12X"   // Extra G-code to run after tool-change

   * Retract and prime filament on tool-change to reduce
   * ooze and stringing and to get cleaner transitions.
    // Load / Unload
    #define TOOLCHANGE_FS_LENGTH              12  // (mm) Load / Unload length
    #define TOOLCHANGE_FS_EXTRA_RESUME_LENGTH  0  // (mm) Extra length for better restart, fine tune by LCD/Gcode)
    #define TOOLCHANGE_FS_RETRACT_SPEED   (50*60) // (mm/min) (Unloading)
    #define TOOLCHANGE_FS_UNRETRACT_SPEED (25*60) // (mm/min) (On SINGLENOZZLE or Bowden loading must be slowed down)

    // Longer prime to clean out a SINGLENOZZLE
    #define TOOLCHANGE_FS_EXTRA_PRIME          0  // (mm) Extra priming length
    #define TOOLCHANGE_FS_PRIME_SPEED    (4.6*60) // (mm/min) Extra priming feedrate
    #define TOOLCHANGE_FS_WIPE_RETRACT         0  // (mm/min) Retract before cooling for less stringing, better wipe, etc.

    // Cool after prime to reduce stringing
    #define TOOLCHANGE_FS_FAN                 -1  // Fan index or -1 to skip
    #define TOOLCHANGE_FS_FAN_SPEED          255  // 0-255
    #define TOOLCHANGE_FS_FAN_TIME            10  // (seconds)

    // Swap uninitialized extruder with TOOLCHANGE_FS_PRIME_SPEED for all lengths (recover + prime)
    // (May break filament if not retracted beforehand.)

    // Prime on the first T0 (If other, TOOLCHANGE_FS_INIT_BEFORE_SWAP applied)
    // Enable it (M217 V[0/1]) before printing, to avoid unwanted priming on host connect

     * Tool Change Migration
     * This feature provides G-code and LCD options to switch tools mid-print.
     * All applicable tool properties are migrated so the print can continue.
     * Tools must be closely matching and other restrictions may apply.
     * Useful to:
     *   - Change filament color without interruption
     *   - Switch spools automatically on filament runout
     *   - Switch to a different nozzle on an extruder jam


   * Position to park head during tool change.
    #define TOOLCHANGE_PARK_XY    { X_MIN_POS + 10, Y_MIN_POS + 10 }
    #define TOOLCHANGE_PARK_XY_FEEDRATE 6000  // (mm/min)
    //#define TOOLCHANGE_PARK_X_ONLY          // X axis only move
    //#define TOOLCHANGE_PARK_Y_ONLY          // Y axis only move

 * Advanced Pause
 * Experimental feature for filament change support and for parking the nozzle when paused.
 * Adds the GCode M600 for initiating filament change.
 * If PARK_HEAD_ON_PAUSE enabled, adds the GCode M125 to pause printing and park the nozzle.
 * Requires an LCD display.
 * This feature is required for the default FILAMENT_RUNOUT_SCRIPT.
  #define PAUSE_PARK_RETRACT_FEEDRATE         60  // (mm/s) Initial retract feedrate.
  #define PAUSE_PARK_RETRACT_LENGTH            2  // (mm) Initial retract.
                                                  // This short retract is done immediately, before parking the nozzle.
  #define FILAMENT_CHANGE_UNLOAD_FEEDRATE     10  // (mm/s) Unload filament feedrate. This can be pretty fast.
  #define FILAMENT_CHANGE_UNLOAD_ACCEL        25  // (mm/s^2) Lower acceleration may allow a faster feedrate.
  #define FILAMENT_CHANGE_UNLOAD_LENGTH      550  // (mm) The length of filament for a complete unload.
                                                  //   For Bowden, the full length of the tube and nozzle.
                                                  //   For direct drive, the full length of the nozzle.
                                                  //   Set to 0 for manual unloading.
  #define FILAMENT_CHANGE_SLOW_LOAD_FEEDRATE   6  // (mm/s) Slow move when starting load.
  #define FILAMENT_CHANGE_SLOW_LOAD_LENGTH     0  // (mm) Slow length, to allow time to insert material.
                                                  // 0 to disable start loading and skip to fast load only
  #define FILAMENT_CHANGE_FAST_LOAD_FEEDRATE   6  // (mm/s) Load filament feedrate. This can be pretty fast.
  #define FILAMENT_CHANGE_FAST_LOAD_ACCEL     25  // (mm/s^2) Lower acceleration may allow a faster feedrate.
  #define FILAMENT_CHANGE_FAST_LOAD_LENGTH   350  // (mm) Load length of filament, from extruder gear to nozzle.
                                                  //   For Bowden, the full length of the tube and nozzle.
                                                  //   For direct drive, the full length of the nozzle.
  //#define ADVANCED_PAUSE_CONTINUOUS_PURGE       // Purge continuously up to the purge length until interrupted.
  #define ADVANCED_PAUSE_PURGE_FEEDRATE        3  // (mm/s) Extrude feedrate (after loading). Should be slower than load feedrate.
  #define ADVANCED_PAUSE_PURGE_LENGTH         50  // (mm) Length to extrude after loading.
                                                  //   Set to 0 for manual extrusion.
                                                  //   Filament can be extruded repeatedly from the Filament Change menu
                                                  //   until extrusion is consistent, and to purge old filament.
  #define ADVANCED_PAUSE_RESUME_PRIME          0  // (mm) Extra distance to prime nozzle after returning from park.
  //#define ADVANCED_PAUSE_FANS_PAUSE             // Turn off print-cooling fans while the machine is paused.

                                                  // Filament Unload does a Retract, Delay, and Purge first:
  #define FILAMENT_UNLOAD_PURGE_RETRACT       13  // (mm) Unload initial retract length.
  #define FILAMENT_UNLOAD_PURGE_DELAY       5000  // (ms) Delay for the filament to cool after retract.
  #define FILAMENT_UNLOAD_PURGE_LENGTH         8  // (mm) An unretract is done, then this length is purged.
  #define FILAMENT_UNLOAD_PURGE_FEEDRATE      25  // (mm/s) feedrate to purge before unload

  #define PAUSE_PARK_NOZZLE_TIMEOUT           45  // (seconds) Time limit before the nozzle is turned off for safety.
  #define FILAMENT_CHANGE_ALERT_BEEPS         10  // Number of alert beeps to play when a response is needed.
  #define PAUSE_PARK_NO_STEPPER_TIMEOUT           // Enable for XYZ steppers to stay powered on during filament change.

  #define PARK_HEAD_ON_PAUSE                    // Park the nozzle during pause and filament change.
  #define HOME_BEFORE_FILAMENT_CHANGE           // If needed, home before parking for filament change

  #define FILAMENT_LOAD_UNLOAD_GCODES           // Add M701/M702 Load/Unload G-codes, plus Load/Unload in the LCD Prepare menu.
  //#define FILAMENT_UNLOAD_ALL_EXTRUDERS         // Allow M702 to unload all extruders above a minimum target temp (as set by M302)

// @section tmc

 * TMC26X Stepper Driver options
 * The TMC26XStepper library is required for this stepper driver.

    #define X_MAX_CURRENT     1000  // (mA)
    #define X_SENSE_RESISTOR    91  // (mOhms)
    #define X_MICROSTEPS        16  // Number of microsteps

    #define X2_MAX_CURRENT    1000
    #define X2_SENSE_RESISTOR   91
    #define X2_MICROSTEPS       16

    #define Y_MAX_CURRENT     1000
    #define Y_SENSE_RESISTOR    91
    #define Y_MICROSTEPS        16

    #define Y2_MAX_CURRENT    1000
    #define Y2_SENSE_RESISTOR   91
    #define Y2_MICROSTEPS       16

    #define Z_MAX_CURRENT     1000
    #define Z_SENSE_RESISTOR    91
    #define Z_MICROSTEPS        16

    #define Z2_MAX_CURRENT    1000
    #define Z2_SENSE_RESISTOR   91
    #define Z2_MICROSTEPS       16

    #define Z3_MAX_CURRENT    1000
    #define Z3_SENSE_RESISTOR   91
    #define Z3_MICROSTEPS       16

    #define Z4_MAX_CURRENT    1000
    #define Z4_SENSE_RESISTOR   91
    #define Z4_MICROSTEPS       16

    #define E0_MAX_CURRENT    1000
    #define E0_SENSE_RESISTOR   91
    #define E0_MICROSTEPS       16

    #define E1_MAX_CURRENT    1000
    #define E1_SENSE_RESISTOR   91
    #define E1_MICROSTEPS       16

    #define E2_MAX_CURRENT    1000
    #define E2_SENSE_RESISTOR   91
    #define E2_MICROSTEPS       16

    #define E3_MAX_CURRENT    1000
    #define E3_SENSE_RESISTOR   91
    #define E3_MICROSTEPS       16

    #define E4_MAX_CURRENT    1000
    #define E4_SENSE_RESISTOR   91
    #define E4_MICROSTEPS       16

    #define E5_MAX_CURRENT    1000
    #define E5_SENSE_RESISTOR   91
    #define E5_MICROSTEPS       16

    #define E6_MAX_CURRENT    1000
    #define E6_SENSE_RESISTOR   91
    #define E6_MICROSTEPS       16

    #define E7_MAX_CURRENT    1000
    #define E7_SENSE_RESISTOR   91
    #define E7_MICROSTEPS       16

#endif // TMC26X

// @section tmc_smart

 * To use TMC2130, TMC2160, TMC2660, TMC5130, TMC5160 stepper drivers in SPI mode
 * connect your SPI pins to the hardware SPI interface on your board and define
 * the required CS pins in your `pins_MYBOARD.h` file. (e.g., RAMPS 1.4 uses AUX3
 * pins `X_CS_PIN 53`, `Y_CS_PIN 49`, etc.).
 * You may also use software SPI if you wish to use general purpose IO pins.
 * To use TMC2208 stepper UART-configurable stepper drivers connect #_SERIAL_TX_PIN
 * to the driver side PDN_UART pin with a 1K resistor.
 * To use the reading capabilities, also connect #_SERIAL_RX_PIN to PDN_UART without
 * a resistor.
 * The drivers can also be used with hardware serial.
 * TMCStepper library is required to use TMC stepper drivers.

  #define HOLD_MULTIPLIER    0.5  // Scales down the holding current from run current

   * Interpolate microsteps to 256
   * Override for each driver with <driver>_INTERPOLATE settings below
  #define INTERPOLATE      true

  #if AXIS_IS_TMC(X)
    #define X_CURRENT       580        // (mA) RMS current. Multiply by 1.414 for peak current.
    #define X_CURRENT_HOME  (X_CURRENT/2)  // (mA) RMS current for sensorless homing
    #define X_MICROSTEPS     16        // 0..256
    #define X_RSENSE          0.11
    #define X_CHAIN_POS      -1        // -1..0: Not chained. 1: MCU MOSI connected. 2: Next in chain, ...
    //#define X_INTERPOLATE  true      // Enable to override 'INTERPOLATE' for the X axis

  #if AXIS_IS_TMC(X2)
    #define X2_CURRENT      800
    #define X2_MICROSTEPS    16
    #define X2_RSENSE         0.11
    #define X2_CHAIN_POS     -1
    //#define X2_INTERPOLATE true

  #if AXIS_IS_TMC(Y)
    #define Y_CURRENT       580
    #define Y_CURRENT_HOME  (Y_CURRENT/2)
    #define Y_MICROSTEPS     16
    #define Y_RSENSE          0.11
    #define Y_CHAIN_POS      -1
    //#define Y_INTERPOLATE  true

  #if AXIS_IS_TMC(Y2)
    #define Y2_CURRENT      800
    #define Y2_MICROSTEPS    16
    #define Y2_RSENSE         0.11
    #define Y2_CHAIN_POS     -1
    //#define Y2_INTERPOLATE true

  #if AXIS_IS_TMC(Z)
    #define Z_CURRENT       580
    #define Z_MICROSTEPS     16
    #define Z_RSENSE          0.11
    #define Z_CHAIN_POS      -1
    //#define Z_INTERPOLATE  true

  #if AXIS_IS_TMC(Z2)
    #define Z2_CURRENT      800
    #define Z2_MICROSTEPS    16
    #define Z2_RSENSE         0.11
    #define Z2_CHAIN_POS     -1
    //#define Z2_INTERPOLATE true

  #if AXIS_IS_TMC(Z3)
    #define Z3_CURRENT      800
    #define Z3_MICROSTEPS    16
    #define Z3_RSENSE         0.11
    #define Z3_CHAIN_POS     -1
    //#define Z3_INTERPOLATE true

  #if AXIS_IS_TMC(Z4)
    #define Z4_CURRENT      800
    #define Z4_MICROSTEPS    16
    #define Z4_RSENSE         0.11
    #define Z4_CHAIN_POS     -1
    //#define Z4_INTERPOLATE true

  #if AXIS_IS_TMC(E0)
    #define E0_CURRENT      650
    #define E0_MICROSTEPS    16
    #define E0_RSENSE         0.11
    #define E0_CHAIN_POS     -1
    //#define E0_INTERPOLATE true

  #if AXIS_IS_TMC(E1)
    #define E1_CURRENT      800
    #define E1_MICROSTEPS    16
    #define E1_RSENSE         0.11
    #define E1_CHAIN_POS     -1
    //#define E1_INTERPOLATE true

  #if AXIS_IS_TMC(E2)
    #define E2_CURRENT      800
    #define E2_MICROSTEPS    16
    #define E2_RSENSE         0.11
    #define E2_CHAIN_POS     -1
    //#define E2_INTERPOLATE true

  #if AXIS_IS_TMC(E3)
    #define E3_CURRENT      800
    #define E3_MICROSTEPS    16
    #define E3_RSENSE         0.11
    #define E3_CHAIN_POS     -1
    //#define E3_INTERPOLATE true

  #if AXIS_IS_TMC(E4)
    #define E4_CURRENT      800
    #define E4_MICROSTEPS    16
    #define E4_RSENSE         0.11
    #define E4_CHAIN_POS     -1
    //#define E4_INTERPOLATE true

  #if AXIS_IS_TMC(E5)
    #define E5_CURRENT      800
    #define E5_MICROSTEPS    16
    #define E5_RSENSE         0.11
    #define E5_CHAIN_POS     -1
    //#define E5_INTERPOLATE true

  #if AXIS_IS_TMC(E6)
    #define E6_CURRENT      800
    #define E6_MICROSTEPS    16
    #define E6_RSENSE         0.11
    #define E6_CHAIN_POS     -1
    //#define E6_INTERPOLATE true

  #if AXIS_IS_TMC(E7)
    #define E7_CURRENT      800
    #define E7_MICROSTEPS    16
    #define E7_RSENSE         0.11
    #define E7_CHAIN_POS     -1
    //#define E7_INTERPOLATE true

   * Override default SPI pins for TMC2130, TMC2160, TMC2660, TMC5130 and TMC5160 drivers here.
   * The default pins can be found in your board's pins file.
  //#define X_CS_PIN          -1
  //#define Y_CS_PIN          -1
  //#define Z_CS_PIN          -1
  //#define X2_CS_PIN         -1
  //#define Y2_CS_PIN         -1
  //#define Z2_CS_PIN         -1
  //#define Z3_CS_PIN         -1
  //#define E0_CS_PIN         -1
  //#define E1_CS_PIN         -1
  //#define E2_CS_PIN         -1
  //#define E3_CS_PIN         -1
  //#define E4_CS_PIN         -1
  //#define E5_CS_PIN         -1
  //#define E6_CS_PIN         -1
  //#define E7_CS_PIN         -1

   * Software option for SPI driven drivers (TMC2130, TMC2160, TMC2660, TMC5130 and TMC5160).
   * The default SW SPI pins are defined the respective pins files,
   * but you can override or define them here.
  //#define TMC_USE_SW_SPI
  //#define TMC_SW_MOSI       -1
  //#define TMC_SW_MISO       -1
  //#define TMC_SW_SCK        -1

   * Four TMC2209 drivers can use the same HW/SW serial port with hardware configured addresses.
   * Set the address using jumpers on pins MS1 and MS2.
   * Address | MS1  | MS2
   *       0 | LOW  | LOW
   *       1 | HIGH | LOW
   *       2 | LOW  | HIGH
   *       3 | HIGH | HIGH
   * Set *_SERIAL_TX_PIN and *_SERIAL_RX_PIN to match for all drivers
   * on the same serial port, either here or in your board's pins file.
  #define  X_SLAVE_ADDRESS 0
  #define  Y_SLAVE_ADDRESS 2
  #define  Z_SLAVE_ADDRESS 1
  #define X2_SLAVE_ADDRESS 0
  #define Y2_SLAVE_ADDRESS 0
  #define Z2_SLAVE_ADDRESS 0
  #define Z3_SLAVE_ADDRESS 0
  #define Z4_SLAVE_ADDRESS 0
  #define E0_SLAVE_ADDRESS 3
  #define E1_SLAVE_ADDRESS 0
  #define E2_SLAVE_ADDRESS 0
  #define E3_SLAVE_ADDRESS 0
  #define E4_SLAVE_ADDRESS 0
  #define E5_SLAVE_ADDRESS 0
  #define E6_SLAVE_ADDRESS 0
  #define E7_SLAVE_ADDRESS 0

   * Software enable
   * Use for drivers that do not use a dedicated enable pin, but rather handle the same
   * function through a communication line such as SPI or UART.

   * TMC2130, TMC2160, TMC2208, TMC2209, TMC5130 and TMC5160 only
   * Use Trinamic's ultra quiet stepping mode.
   * When disabled, Marlin will use spreadCycle stepping mode.

   * Optimize spreadCycle chopper parameters by using predefined parameter sets
   * or with the help of an example included in the library.
   * Provided parameter sets are
   * CHOPPER_09STEP_24V   // 0.9 degree steppers (24V)
   * CHOPPER_PRUSAMK3_24V // Imported parameters from the official Průša firmware for MK3 (24V)
   * CHOPPER_MARLIN_119   // Old defaults from Marlin v1.1.9
   * Define your own with:
   * { <off_time[1..15]>, <hysteresis_end[-3..12]>, hysteresis_start[1..8] }
  #define CHOPPER_TIMING CHOPPER_DEFAULT_24V        // All axes (override below)
  //#define CHOPPER_TIMING_X  CHOPPER_DEFAULT_12V   // For X Axes (override below)
  //#define CHOPPER_TIMING_Y  CHOPPER_DEFAULT_12V   // For Y Axes (override below)
  //#define CHOPPER_TIMING_Z  CHOPPER_DEFAULT_12V   // For Z Axes (override below)
  //#define CHOPPER_TIMING_E  CHOPPER_DEFAULT_12V   // For Extruders (override below)

   * Monitor Trinamic drivers
   * for error conditions like overtemperature and short to ground.
   * To manage over-temp Marlin can decrease the driver current until the error condition clears.
   * Other detected conditions can be used to stop the current print.
   * Relevant G-codes:
   * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given.
   * M911 - Report stepper driver overtemperature pre-warn condition.
   * M912 - Clear stepper driver overtemperature pre-warn condition flag.
   * M122 - Report driver parameters (Requires TMC_DEBUG)

    #define CURRENT_STEP_DOWN     50  // [mA]
    #define STOP_ON_ERROR

   * TMC2130, TMC2160, TMC2208, TMC2209, TMC5130 and TMC5160 only
   * The driver will switch to spreadCycle when stepper speed is over HYBRID_THRESHOLD.
   * This mode allows for faster movements at the expense of higher noise levels.
   * STEALTHCHOP_(XY|Z|E) must be enabled to use HYBRID_THRESHOLD.
   * M913 X/Y/Z/E to live tune the setting

  #define X_HYBRID_THRESHOLD     100  // [mm/s]
  #define X2_HYBRID_THRESHOLD    100
  #define Y_HYBRID_THRESHOLD     100
  #define Y2_HYBRID_THRESHOLD    100
  #define Z_HYBRID_THRESHOLD       3
  #define Z2_HYBRID_THRESHOLD      3
  #define Z3_HYBRID_THRESHOLD      3
  #define Z4_HYBRID_THRESHOLD      3
  #define E0_HYBRID_THRESHOLD     30
  #define E1_HYBRID_THRESHOLD     30
  #define E2_HYBRID_THRESHOLD     30
  #define E3_HYBRID_THRESHOLD     30
  #define E4_HYBRID_THRESHOLD     30
  #define E5_HYBRID_THRESHOLD     30
  #define E6_HYBRID_THRESHOLD     30
  #define E7_HYBRID_THRESHOLD     30

   * Use StallGuard to home / probe X, Y, Z.
   * TMC2130, TMC2160, TMC2209, TMC2660, TMC5130, and TMC5160 only
   * Connect the stepper driver's DIAG1 pin to the X/Y endstop pin.
   * X, Y, and Z homing will always be done in spreadCycle mode.
   * X/Y/Z_STALL_SENSITIVITY is the default stall threshold.
   * Use M914 X Y Z to set the stall threshold at runtime:
   *  Sensitivity   TMC2209   Others
   *    HIGHEST       255      -64    (Too sensitive => False positive)
   *    LOWEST         0        63    (Too insensitive => No trigger)
   * It is recommended to set HOMING_BUMP_MM to { 0, 0, 0 }.
   * SPI_ENDSTOPS  *** Beta feature! *** TMC2130 Only ***
   * Poll the driver through SPI to determine load when homing.
   * Removes the need for a wire from DIAG1 to an endstop pin.
   * IMPROVE_HOMING_RELIABILITY tunes acceleration and jerk when
   * homing and adds a guard period for endstop triggering.
   * Comment *_STALL_SENSITIVITY to disable sensorless homing for that axis.
  //#define SENSORLESS_HOMING // StallGuard capable drivers only

    // TMC2209: 0...255. TMC2130: -64...63
    #define X_STALL_SENSITIVITY  75
    #define Y_STALL_SENSITIVITY  75
    //#define Z_STALL_SENSITIVITY  8
    //#define SPI_ENDSTOPS              // TMC2130 only

   * TMC Homing stepper phase.
   * Improve homing repeatability by homing to stepper coil's nearest absolute
   * phase position. Trinamic drivers use a stepper phase table with 1024 values
   * spanning 4 full steps with 256 positions each (ergo, 1024 positions).
   * Full step positions (128, 384, 640, 896) have the highest holding torque.
   * Values from 0..1023, -1 to disable homing phase for that axis.
   //#define TMC_HOME_PHASE { 896, 896, 896 }

   * Beta feature!
   * Create a 50/50 square wave step pulse optimal for stepper drivers.

   * Enable M122 debugging command for TMC stepper drivers.
   * M122 S0/1 will enable continous reporting.
  //#define TMC_DEBUG

   * You can set your own advanced settings by filling in predefined functions.
   * A list of available functions can be found on the library github page
   * Example:
   * #define TMC_ADV() { \
   *   stepperX.diag0_otpw(1); \
   *   stepperY.intpol(0); \
   * }
  #define TMC_ADV() {  }


// @section L64XX

 * L64XX Stepper Driver options
 * Arduino-L6470 library (0.8.0 or higher) is required.
 * Requires the following to be defined in your pins_YOUR_BOARD file
 *     L6470_CHAIN_SCK_PIN
 *     L6470_CHAIN_MISO_PIN
 *     L6470_CHAIN_MOSI_PIN
 *     L6470_CHAIN_SS_PIN
 *     ENABLE_RESET_L64XX_CHIPS(Q)  where Q is 1 to enable and 0 to reset

#if HAS_L64XX

  //#define L6470_CHITCHAT        // Display additional status info

  #if AXIS_IS_L64XX(X)
    #define X_MICROSTEPS       128  // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
    #define X_OVERCURRENT     2000  // (mA) Current where the driver detects an over current
                                    //   L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
                                    //   POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
    #define X_STALLCURRENT    1500  // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) -  4A max - rounds down)
                                    //   L6470 & L6474 - VALID: 31.25 * (1-128) -  4A max - rounds down
                                    //   POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
                                    //   L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
    #define X_MAX_VOLTAGE      127  // 0-255, Maximum effective voltage seen by stepper - not used by L6474
    #define X_CHAIN_POS         -1  // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
    #define X_SLEW_RATE          1  // 0-3, Slew 0 is slowest, 3 is fastest

  #if AXIS_IS_L64XX(X2)
    #define X2_MICROSTEPS      128
    #define X2_OVERCURRENT    2000
    #define X2_STALLCURRENT   1500
    #define X2_MAX_VOLTAGE     127
    #define X2_CHAIN_POS        -1
    #define X2_SLEW_RATE         1

  #if AXIS_IS_L64XX(Y)
    #define Y_MICROSTEPS       128
    #define Y_OVERCURRENT     2000
    #define Y_STALLCURRENT    1500
    #define Y_MAX_VOLTAGE      127
    #define Y_CHAIN_POS         -1
    #define Y_SLEW_RATE          1

  #if AXIS_IS_L64XX(Y2)
    #define Y2_MICROSTEPS      128
    #define Y2_OVERCURRENT    2000
    #define Y2_STALLCURRENT   1500
    #define Y2_MAX_VOLTAGE     127
    #define Y2_CHAIN_POS        -1
    #define Y2_SLEW_RATE         1

  #if AXIS_IS_L64XX(Z)
    #define Z_MICROSTEPS       128
    #define Z_OVERCURRENT     2000
    #define Z_STALLCURRENT    1500
    #define Z_MAX_VOLTAGE      127
    #define Z_CHAIN_POS         -1
    #define Z_SLEW_RATE          1

  #if AXIS_IS_L64XX(Z2)
    #define Z2_MICROSTEPS      128
    #define Z2_OVERCURRENT    2000
    #define Z2_STALLCURRENT   1500
    #define Z2_MAX_VOLTAGE     127
    #define Z2_CHAIN_POS        -1
    #define Z2_SLEW_RATE         1

  #if AXIS_IS_L64XX(Z3)
    #define Z3_MICROSTEPS      128
    #define Z3_OVERCURRENT    2000
    #define Z3_STALLCURRENT   1500
    #define Z3_MAX_VOLTAGE     127
    #define Z3_CHAIN_POS        -1
    #define Z3_SLEW_RATE         1

  #if AXIS_IS_L64XX(Z4)
    #define Z4_MICROSTEPS      128
    #define Z4_OVERCURRENT    2000
    #define Z4_STALLCURRENT   1500
    #define Z4_MAX_VOLTAGE     127
    #define Z4_CHAIN_POS        -1
    #define Z4_SLEW_RATE         1

  #if AXIS_IS_L64XX(E0)
    #define E0_MICROSTEPS      128
    #define E0_OVERCURRENT    2000
    #define E0_STALLCURRENT   1500
    #define E0_MAX_VOLTAGE     127
    #define E0_CHAIN_POS        -1
    #define E0_SLEW_RATE         1

  #if AXIS_IS_L64XX(E1)
    #define E1_MICROSTEPS      128
    #define E1_OVERCURRENT    2000
    #define E1_STALLCURRENT   1500
    #define E1_MAX_VOLTAGE     127
    #define E1_CHAIN_POS        -1
    #define E1_SLEW_RATE         1

  #if AXIS_IS_L64XX(E2)
    #define E2_MICROSTEPS      128
    #define E2_OVERCURRENT    2000
    #define E2_STALLCURRENT   1500
    #define E2_MAX_VOLTAGE     127
    #define E2_CHAIN_POS        -1
    #define E2_SLEW_RATE         1

  #if AXIS_IS_L64XX(E3)
    #define E3_MICROSTEPS      128
    #define E3_OVERCURRENT    2000
    #define E3_STALLCURRENT   1500
    #define E3_MAX_VOLTAGE     127
    #define E3_CHAIN_POS        -1
    #define E3_SLEW_RATE         1

  #if AXIS_IS_L64XX(E4)
    #define E4_MICROSTEPS      128
    #define E4_OVERCURRENT    2000
    #define E4_STALLCURRENT   1500
    #define E4_MAX_VOLTAGE     127
    #define E4_CHAIN_POS        -1
    #define E4_SLEW_RATE         1

  #if AXIS_IS_L64XX(E5)
    #define E5_MICROSTEPS      128
    #define E5_OVERCURRENT    2000
    #define E5_STALLCURRENT   1500
    #define E5_MAX_VOLTAGE     127
    #define E5_CHAIN_POS        -1
    #define E5_SLEW_RATE         1

  #if AXIS_IS_L64XX(E6)
    #define E6_MICROSTEPS      128
    #define E6_OVERCURRENT    2000
    #define E6_STALLCURRENT   1500
    #define E6_MAX_VOLTAGE     127
    #define E6_CHAIN_POS        -1
    #define E6_SLEW_RATE         1

  #if AXIS_IS_L64XX(E7)
    #define E7_MICROSTEPS      128
    #define E7_OVERCURRENT    2000
    #define E7_STALLCURRENT   1500
    #define E7_MAX_VOLTAGE     127
    #define E7_CHAIN_POS        -1
    #define E7_SLEW_RATE         1

   * Monitor L6470 drivers for error conditions like over temperature and over current.
   * In the case of over temperature Marlin can decrease the drive until the error condition clears.
   * Other detected conditions can be used to stop the current print.
   * Relevant G-codes:
   * M906 - I1/2/3/4/5  Set or get motor drive level using axis codes X, Y, Z, E. Report values if no axis codes given.
   *         I not present or I0 or I1 - X, Y, Z or E0
   *         I2 - X2, Y2, Z2 or E1
   *         I3 - Z3 or E3
   *         I4 - Z4 or E4
   *         I5 - E5
   * M916 - Increase drive level until get thermal warning
   * M917 - Find minimum current thresholds
   * M918 - Increase speed until max or error
   * M122 S0/1 - Report driver parameters

    #define KVAL_HOLD_STEP_DOWN     1
    //#define L6470_STOP_ON_ERROR

#endif // HAS_L64XX

// @section i2cbus

// I2C Master ID for LPC176x LCD and Digital Current control
// Does not apply to other peripherals based on the Wire library.
//#define I2C_MASTER_ID  1  // Set a value from 0 to 2

 * This feature is an EXPERIMENTAL feature so it shall not be used on production
 * machines. Enabling this will allow you to send and receive I2C data from slave
 * devices on the bus.
 * ; Example #1
 * ; This macro send the string "Marlin" to the slave device with address 0x63 (99)
 * ; It uses multiple M260 commands with one B<base 10> arg
 * M260 A99  ; Target slave address
 * M260 B77  ; M
 * M260 B97  ; a
 * M260 B114 ; r
 * M260 B108 ; l
 * M260 B105 ; i
 * M260 B110 ; n
 * M260 S1   ; Send the current buffer
 * ; Example #2
 * ; Request 6 bytes from slave device with address 0x63 (99)
 * M261 A99 B5
 * ; Example #3
 * ; Example serial output of a M261 request
 * echo:i2c-reply: from:99 bytes:5 data:hello

  #define I2C_SLAVE_ADDRESS  0  // Set a value from 8 to 127 to act as a slave

// @section extras

 * Photo G-code
 * Add the M240 G-code to take a photo.
 * The photo can be triggered by a digital pin or a physical movement.
//#define PHOTO_GCODE
  // A position to move to (and raise Z) before taking the photo
  //#define PHOTO_POSITION { X_MAX_POS - 5, Y_MAX_POS, 0 }  // { xpos, ypos, zraise } (M240 X Y Z)
  //#define PHOTO_DELAY_MS   100                            // (ms) Duration to pause before moving back (M240 P)
  //#define PHOTO_RETRACT_MM   6.5                          // (mm) E retract/recover for the photo move (M240 R S)

  // Canon RC-1 or homebrew digital camera trigger
  // Data from:
  //#define PHOTOGRAPH_PIN 23

  // Canon Hack Development Kit
  //#define CHDK_PIN        4

  // Optional second move with delay to trigger the camera shutter
  //#define PHOTO_SWITCH_POSITION { X_MAX_POS, Y_MAX_POS }  // { xpos, ypos } (M240 I J)

  // Duration to hold the switch or keep CHDK_PIN high
  //#define PHOTO_SWITCH_MS   50 // (ms) (M240 D)

   * PHOTO_PULSES_US may need adjustment depending on board and camera model.
   * Pin must be running at 48.4kHz.
   * Be sure to use a PHOTOGRAPH_PIN which can rise and fall quick enough.
   * (e.g., MKS SBase temp sensor pin was too slow, so used P1.23 on J8.)
   *  Example pulse data for Nikon:
   *                     IR Wiring:
  //#define PHOTO_PULSES_US { 2000, 27850, 400, 1580, 400, 3580, 400 }  // (µs) Durations for each 48.4kHz oscillation
    #define PHOTO_PULSE_DELAY_US 13 // (µs) Approximate duration of each HIGH and LOW pulse in the oscillation

 * Spindle & Laser control
 * Add the M3, M4, and M5 commands to turn the spindle/laser on and off, and
 * to set spindle speed, spindle direction, and laser power.
 * SuperPid is a router/spindle speed controller used in the CNC milling community.
 * Marlin can be used to turn the spindle on and off. It can also be used to set
 * the spindle speed from 5,000 to 30,000 RPM.
 * You'll need to select a pin for the ON/OFF function and optionally choose a 0-5V
 * hardware PWM pin for the speed control and a pin for the rotation direction.
 * See for more config details.
  #define SPINDLE_LASER_ACTIVE_STATE    LOW    // Set to "HIGH" if the on/off function is active HIGH
  #define SPINDLE_LASER_PWM             true   // Set to "true" if your controller supports setting the speed/power
  #define SPINDLE_LASER_PWM_INVERT      false  // Set to "true" if the speed/power goes up when you want it to go slower

  #define SPINDLE_LASER_FREQUENCY       2500   // (Hz) Spindle/laser frequency (only on supported HALs: AVR and LPC)

   * Speed / Power can be set ('M3 S') and displayed in terms of:
   *  - PWM255  (S0 - S255)
   *  - PERCENT (S0 - S100)
   *  - RPM     (S0 - S50000)  Best for use with a spindle

   * Relative Cutter Power
   * Normally, 'M3 O<power>' sets
   * OCR power is relative to the range SPEED_POWER_MIN...SPEED_POWER_MAX.
   * so input powers of 0...255 correspond to SPEED_POWER_MIN...SPEED_POWER_MAX
   * instead of normal range (0 to SPEED_POWER_MAX).
   * Best used with (e.g.) SuperPID router controller: S0 = 5,000 RPM and S255 = 30,000 RPM
  //#define CUTTER_POWER_RELATIVE              // Set speed proportional to [SPEED_POWER_MIN...SPEED_POWER_MAX]

    //#define SPINDLE_CHANGE_DIR               // Enable if your spindle controller can change spindle direction
    #define SPINDLE_CHANGE_DIR_STOP            // Enable if the spindle should stop before changing spin direction
    #define SPINDLE_INVERT_DIR          false  // Set to "true" if the spin direction is reversed

    #define SPINDLE_LASER_POWERUP_DELAY   5000 // (ms) Delay to allow the spindle/laser to come up to speed/power
    #define SPINDLE_LASER_POWERDOWN_DELAY 5000 // (ms) Delay to allow the spindle to stop

     * M3/M4 Power Equation
     * Each tool uses different value ranges for speed / power control.
     * These parameters are used to convert between tool power units and PWM.
     * Speed/Power = (PWMDC / 255 * 100 - SPEED_POWER_INTERCEPT) / SPEED_POWER_SLOPE
    #define SPEED_POWER_INTERCEPT         0    // (%) 0-100 i.e., Minimum power percentage
    #define SPEED_POWER_MIN            5000    // (RPM)
    #define SPEED_POWER_MAX           30000    // (RPM) SuperPID router controller 0 - 30,000 RPM
    #define SPEED_POWER_STARTUP       25000    // (RPM) M3/M4 speed/power default (with no arguments)


    #define SPEED_POWER_INTERCEPT         0    // (%) 0-100 i.e., Minimum power percentage
    #define SPEED_POWER_MIN               0    // (%) 0-100
    #define SPEED_POWER_MAX             100    // (%) 0-100
    #define SPEED_POWER_STARTUP          80    // (%) M3/M4 speed/power default (with no arguments)

     * Enable inline laser power to be handled in the planner / stepper routines.
     * Inline power is specified by the I (inline) flag in an M3 command (e.g., M3 S20 I)
     * or by the 'S' parameter in G0/G1/G2/G3 moves (see LASER_MOVE_POWER).
     * This allows the laser to keep in perfect sync with the planner and removes
     * the powerup/down delay since lasers require negligible time.
    //#define LASER_POWER_INLINE

       * Scale the laser's power in proportion to the movement rate.
       * - Sets the entry power proportional to the entry speed over the nominal speed.
       * - Ramps the power up every N steps to approximate the speed trapezoid.
       * - Due to the limited power resolution this is only approximate.

       * Continuously calculate the current power (nominal_power * current_rate / nominal_rate).
       * Required for accurate power with non-trapezoidal acceleration (e.g., S_CURVE_ACCELERATION).
       * This is a costly calculation so this option is discouraged on 8-bit AVR boards.
       * LASER_POWER_INLINE_TRAPEZOID_CONT_PER defines how many step cycles there are between power updates. If your
       * board isn't able to generate steps fast enough (and you are using LASER_POWER_INLINE_TRAPEZOID_CONT), increase this.
       * Note that when this is zero it means it occurs every cycle; 1 means a delay wait one cycle then run, etc.

       * Stepper iterations between power updates. Increase this value if the board
       * can't keep up with the processing demands of LASER_POWER_INLINE_TRAPEZOID_CONT.
       * Disable (or set to 0) to recalculate power on every stepper iteration.

       * Include laser power in G0/G1/G2/G3/G5 commands with the 'S' parameter
      //#define LASER_MOVE_POWER

        // Turn off the laser on G0 moves with no power parameter.
        // If a power parameter is provided, use that instead.
        //#define LASER_MOVE_G0_OFF

        // Turn off the laser on G28 homing.
        //#define LASER_MOVE_G28_OFF

       * Inline flag inverted
       * WARNING: M5 will NOT turn off the laser unless another move
       *          is done (so G-code files must end with 'M5 I').

       * Continuously apply inline power. ('M3 S3' == 'G1 S3' == 'M3 S3 I')
       * The laser might do some weird things, so only enable this
       * feature if you understand the implications.


      #define SPINDLE_LASER_POWERUP_DELAY     50 // (ms) Delay to allow the spindle/laser to come up to speed/power
      #define SPINDLE_LASER_POWERDOWN_DELAY   50 // (ms) Delay to allow the spindle to stop


 * Coolant Control
 * Add the M7, M8, and M9 commands to turn mist or flood coolant on and off.
 * Note: COOLANT_MIST_PIN and/or COOLANT_FLOOD_PIN must also be defined.
  #define COOLANT_MIST                // Enable if mist coolant is present
  #define COOLANT_FLOOD               // Enable if flood coolant is present
  #define COOLANT_MIST_INVERT  false  // Set "true" if the on/off function is reversed
  #define COOLANT_FLOOD_INVERT false  // Set "true" if the on/off function is reversed

 * Filament Width Sensor
 * Measures the filament width in real-time and adjusts
 * flow rate to compensate for any irregularities.
 * Also allows the measured filament diameter to set the
 * extrusion rate, so the slicer only has to specify the
 * volume.
 * Only a single extruder is supported at this time.
 *  34 RAMPS_14    : Analog input 5 on the AUX2 connector
 *  81 PRINTRBOARD : Analog input 2 on the Exp1 connector (version B,C,D,E)
 * 301 RAMBO       : Analog input 3
 * Note: May require analog pins to be defined for other boards.

  #define FILAMENT_SENSOR_EXTRUDER_NUM 0    // Index of the extruder that has the filament sensor. :[0,1,2,3,4]
  #define MEASUREMENT_DELAY_CM        14    // (cm) The distance from the filament sensor to the melting chamber

  #define FILWIDTH_ERROR_MARGIN        1.0  // (mm) If a measurement differs too much from nominal width ignore it
  #define MAX_MEASUREMENT_DELAY       20    // (bytes) Buffer size for stored measurements (1 byte per cm). Must be larger than MEASUREMENT_DELAY_CM.

  #define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA // Set measured to nominal initially

  // Display filament width on the LCD status line. Status messages will expire after 5 seconds.

 * Power Monitor
 * Monitor voltage (V) and/or current (A), and -when possible- power (W)
 * Read and configure with M430
 * The current sensor feeds DC voltage (relative to the measured current) to an analog pin
 * The voltage sensor feeds DC voltage (relative to the measured voltage) to an analog pin
//#define POWER_MONITOR_CURRENT   // Monitor the system current
//#define POWER_MONITOR_VOLTAGE   // Monitor the system voltage
  #define POWER_MONITOR_VOLTS_PER_AMP   0.05000   // Input voltage to the MCU analog pin per amp  - DO NOT apply more than ADC_VREF!
  #define POWER_MONITOR_CURRENT_OFFSET -1         // Offset value for current sensors with linear function output
  #define POWER_MONITOR_VOLTS_PER_VOLT  0.11786   // Input voltage to the MCU analog pin per volt - DO NOT apply more than ADC_VREF!
  #define POWER_MONITOR_FIXED_VOLTAGE   13.6      // Voltage for a current sensor with no voltage sensor (for power display)

 * CNC Coordinate Systems
 * Enables G53 and G54-G59.3 commands to select coordinate systems
 * and G92.1 to reset the workspace to native machine space.

 * Auto-report temperatures with M155 S<seconds>

 * Include capabilities in M115 output
  //#define M115_GEOMETRY_REPORT

 * Expected Printer Check
 * Add the M16 G-code to compare a string to the MACHINE_NAME.
 * M16 with a non-matching string causes the printer to halt.

 * Disable all Volumetric extrusion options

   * Volumetric extrusion default state
   * Activate to make volumetric extrusion the default method,
   * with DEFAULT_NOMINAL_FILAMENT_DIA as the default diameter.
   * M200 D0 to disable, M200 Dn to set a new diameter (and enable volumetric).
   * M200 S0/S1 to disable/enable volumetric extrusion.

     * Default volumetric extrusion limit in cubic mm per second (mm^3/sec).
     * This factory setting applies to all extruders.
     * Use 'M200 [T<extruder>] L<limit>' to override and 'M502' to reset.
     * A non-zero value activates Volume-based Extrusion Limiting.
    #define DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT 0.00      // (mm^3/sec)

 * Enable this option for a leaner build of Marlin that removes all
 * workspace offsets, simplifying coordinate transformations, leveling, etc.
 *  - M206 and M428 are disabled.
 *  - G92 will revert to its behavior from Marlin 1.0.

// Extra options for the M114 "Current Position" report
//#define M114_DETAIL         // Use 'M114` for details to check planner calculations
//#define M114_REALTIME       // Real current position based on forward kinematics
//#define M114_LEGACY         // M114 used to synchronize on every call. Enable if needed.

//#define REPORT_FAN_CHANGE   // Report the new fan speed when changed by M106 (and others)

 * Set the number of proportional font spaces required to fill up a typical character space.
 * This can help to better align the output of commands like `G29 O` Mesh Output.
 * For clients that use a fixed-width font (like OctoPrint), leave this set to 1.0.
 * Otherwise, adjust according to your client and font.

 * Spend 28 bytes of SRAM to optimize the GCode parser

  //#define GCODE_QUOTED_STRINGS  // Support for quoted string parameters

//#define GCODE_CASE_INSENSITIVE  // Accept G-code sent to the firmware in lowercase

//#define REPETIER_GCODE_M360     // Add commands originally from Repetier FW

 * CNC G-code options
 * Support CNC-style G-code dialects used by laser cutters, drawing machine cams, etc.
 * Note that G0 feedrates should be used with care for 3D printing (if used at all).
 * High feedrates may cause ringing and harm print quality.
//#define PAREN_COMMENTS      // Support for parentheses-delimited comments
//#define GCODE_MOTION_MODES  // Remember the motion mode (G0 G1 G2 G3 G5 G38.X) and apply for X Y Z E F, etc.

// Enable and set a (default) feedrate for all G0 moves
//#define G0_FEEDRATE 3000 // (mm/min)
#ifdef G0_FEEDRATE
  //#define VARIABLE_G0_FEEDRATE // The G0 feedrate is set by F in G0 motion mode

 * Startup commands
 * Execute certain G-code commands immediately after power-on.
//#define STARTUP_COMMANDS "M17 Z"

 * G-code Macros
 * Add G-codes M810-M819 to define and run G-code macros.
 * Macros are not saved to EEPROM.
//#define GCODE_MACROS
  #define GCODE_MACROS_SLOTS       5  // Up to 10 may be used
  #define GCODE_MACROS_SLOT_SIZE  50  // Maximum length of a single macro

 * User-defined menu items that execute custom GCode
  //#define CUSTOM_USER_MENU_TITLE "Custom Commands"
  #define USER_SCRIPT_DONE "M117 User Script Done"
  //#define USER_SCRIPT_RETURN  // Return to status screen after a script

  #define USER_DESC_1 "Home & UBL Info"
  #define USER_GCODE_1 "G28\nG29 W"

  #define USER_DESC_2 "Preheat for " PREHEAT_1_LABEL

  #define USER_DESC_3 "Preheat for " PREHEAT_2_LABEL

  #define USER_DESC_4 "Heat Bed/Home/Level"
  #define USER_GCODE_4 "M140 S" STRINGIFY(PREHEAT_2_TEMP_BED) "\nG28\nG29"

  #define USER_DESC_5 "Home & Info"
  #define USER_GCODE_5 "G28\nM503"

 * Host Action Commands
 * Define host streamer action commands in compliance with the standard.
 * See
 * Common commands ........ poweroff, pause, paused, resume, resumed, cancel
 * G29_RETRY_AND_RECOVER .. probe_rewipe, probe_failed
 * Some features add reason codes to extend these commands.
 * Host Prompt Support enables Marlin to use the host for user prompts so
 * filament runout and other processes can be managed from the host side.
  //#define HOST_START_MENU_ITEM  // Add a menu item that tells the host to start

 * Cancel Objects
 * Implement M486 to allow Marlin to skip objects

 * I2C position encoders for closed loop control.
 * Developed by Chris Barr at Aus3D.
 * Wiki:
 * Github:
 * Supplier:
 * Alternative Supplier:
 * Reliabuild encoders have been modified to improve reliability.


  #define I2CPE_ENCODER_CNT         1                       // The number of encoders installed; max of 5
                                                            // encoders supported currently.

  #define I2CPE_ENC_1_ADDR          I2CPE_PRESET_ADDR_X     // I2C address of the encoder. 30-200.
  #define I2CPE_ENC_1_AXIS          X_AXIS                  // Axis the encoder module is installed on.  <X|Y|Z|E>_AXIS.
  #define I2CPE_ENC_1_TYPE          I2CPE_ENC_TYPE_LINEAR   // Type of encoder:  I2CPE_ENC_TYPE_LINEAR -or-
                                                            // I2CPE_ENC_TYPE_ROTARY.
  #define I2CPE_ENC_1_TICKS_UNIT    2048                    // 1024 for magnetic strips with 2mm poles; 2048 for
                                                            // 1mm poles. For linear encoders this is ticks / mm,
                                                            // for rotary encoders this is ticks / revolution.
  //#define I2CPE_ENC_1_TICKS_REV     (16 * 200)            // Only needed for rotary encoders; number of stepper
                                                            // steps per full revolution (motor steps/rev * microstepping)
  //#define I2CPE_ENC_1_INVERT                              // Invert the direction of axis travel.
  #define I2CPE_ENC_1_EC_METHOD     I2CPE_ECM_MICROSTEP     // Type of error error correction.
  #define I2CPE_ENC_1_EC_THRESH     0.10                    // Threshold size for error (in mm) above which the
                                                            // printer will attempt to correct the error; errors
                                                            // smaller than this are ignored to minimize effects of
                                                            // measurement noise / latency (filter).

  #define I2CPE_ENC_2_ADDR          I2CPE_PRESET_ADDR_Y     // Same as above, but for encoder 2.
  #define I2CPE_ENC_2_AXIS          Y_AXIS
  #define I2CPE_ENC_2_TYPE          I2CPE_ENC_TYPE_LINEAR
  #define I2CPE_ENC_2_TICKS_UNIT    2048
  //#define I2CPE_ENC_2_TICKS_REV   (16 * 200)
  //#define I2CPE_ENC_2_INVERT
  #define I2CPE_ENC_2_EC_THRESH     0.10

  #define I2CPE_ENC_3_ADDR          I2CPE_PRESET_ADDR_Z     // Encoder 3.  Add additional configuration options
  #define I2CPE_ENC_3_AXIS          Z_AXIS                  // as above, or use defaults below.

  #define I2CPE_ENC_4_ADDR          I2CPE_PRESET_ADDR_E     // Encoder 4.
  #define I2CPE_ENC_4_AXIS          E_AXIS

  #define I2CPE_ENC_5_ADDR          34                      // Encoder 5.
  #define I2CPE_ENC_5_AXIS          E_AXIS

  // Default settings for encoders which are enabled, but without settings configured above.
  #define I2CPE_DEF_TYPE            I2CPE_ENC_TYPE_LINEAR
  #define I2CPE_DEF_ENC_TICKS_UNIT  2048
  #define I2CPE_DEF_TICKS_REV       (16 * 200)
  #define I2CPE_DEF_EC_THRESH       0.1

  //#define I2CPE_ERR_THRESH_ABORT  100.0                   // Threshold size for error (in mm) error on any given
                                                            // axis after which the printer will abort. Comment out to
                                                            // disable abort behavior.

  #define I2CPE_TIME_TRUSTED        10000                   // After an encoder fault, there must be no further fault
                                                            // for this amount of time (in ms) before the encoder
                                                            // is trusted again.

   * Position is checked every time a new command is executed from the buffer but during long moves,
   * this setting determines the minimum update time between checks. A value of 100 works well with
   * error rolling average when attempting to correct only for skips and not for vibration.
  #define I2CPE_MIN_UPD_TIME_MS     4                       // (ms) Minimum time between encoder checks.

  // Use a rolling average to identify persistant errors that indicate skips, as opposed to vibration and noise.


 * Analog Joystick(s)
//#define JOYSTICK
  #define JOY_X_PIN    5  // RAMPS: Suggested pin A5  on AUX2
  #define JOY_Y_PIN   10  // RAMPS: Suggested pin A10 on AUX2
  #define JOY_Z_PIN   12  // RAMPS: Suggested pin A12 on AUX2
  #define JOY_EN_PIN  44  // RAMPS: Suggested pin D44 on AUX2

  //#define INVERT_JOY_X  // Enable if X direction is reversed
  //#define INVERT_JOY_Y  // Enable if Y direction is reversed
  //#define INVERT_JOY_Z  // Enable if Z direction is reversed

  // Use M119 with JOYSTICK_DEBUG to find reasonable values after connecting:
  #define JOY_X_LIMITS { 5600, 8190-100, 8190+100, 10800 } // min, deadzone start, deadzone end, max
  #define JOY_Y_LIMITS { 5600, 8250-100, 8250+100, 11000 }
  #define JOY_Z_LIMITS { 4800, 8080-100, 8080+100, 11550 }
  //#define JOYSTICK_DEBUG

 * Mechanical Gantry Calibration
 * Modern replacement for the Prusa TMC_Z_CALIBRATION.
 * Adds capability to work with any adjustable current drivers.
 * Implemented as G34 because M915 is deprecated.
  #define GANTRY_CALIBRATION_CURRENT          600     // Default calibration current in ma
  #define GANTRY_CALIBRATION_EXTRA_HEIGHT      15     // Extra distance in mm past Z_###_POS to move
  #define GANTRY_CALIBRATION_FEEDRATE         500     // Feedrate for correction move
  //#define GANTRY_CALIBRATION_TO_MIN                 // Enable to calibrate Z in the MIN direction

  //#define GANTRY_CALIBRATION_SAFE_POSITION  { X_CENTER, Y_CENTER } // Safe position for nozzle
  //#define GANTRY_CALIBRATION_XY_PARK_FEEDRATE 3000  // XY Park Feedrate - MMM
  #define GANTRY_CALIBRATION_COMMANDS_POST  "G28"     // G28 highly recommended to ensure an accurate position

 * MAX7219 Debug Matrix
 * Add support for a low-cost 8x8 LED Matrix based on the Max7219 chip as a realtime status display.
 * Requires 3 signal wires. Some useful debug options are included to demonstrate its usage.
//#define MAX7219_DEBUG
  #define MAX7219_CLK_PIN   64
  #define MAX7219_DIN_PIN   57
  #define MAX7219_LOAD_PIN  44

  //#define MAX7219_GCODE          // Add the M7219 G-code to control the LED matrix
  #define MAX7219_INIT_TEST    2   // Test pattern at startup: 0=none, 1=sweep, 2=spiral
  #define MAX7219_NUMBER_UNITS 1   // Number of Max7219 units in chain.
  #define MAX7219_ROTATE       0   // Rotate the display clockwise (in multiples of +/- 90°)
                                   // connector at:  right=0   bottom=-90  top=90  left=180
  //#define MAX7219_REVERSE_ORDER  // The individual LED matrix units may be in reversed order
  //#define MAX7219_SIDE_BY_SIDE   // Big chip+matrix boards can be chained side-by-side

   * Sample debug features
   * If you add more debug displays, be careful to avoid conflicts!
  #define MAX7219_DEBUG_PRINTER_ALIVE    // Blink corner LED of 8x8 matrix to show that the firmware is functioning
  #define MAX7219_DEBUG_PLANNER_HEAD  3  // Show the planner queue head position on this and the next LED matrix row
  #define MAX7219_DEBUG_PLANNER_TAIL  5  // Show the planner queue tail position on this and the next LED matrix row

  #define MAX7219_DEBUG_PLANNER_QUEUE 0  // Show the current planner queue depth on this and the next LED matrix row
                                         // If you experience stuttering, reboots, etc. this option can reveal how
                                         // tweaks made to the configuration are affecting the printer in real-time.

 * NanoDLP Sync support
 * Add support for Synchronized Z moves when using with NanoDLP. G0/G1 axis moves will output "Z_move_comp"
 * string to enable synchronization with DLP projector exposure. This change will allow to use
 * [[WaitForDoneMessage]] instead of populating your gcode with M400 commands
//#define NANODLP_Z_SYNC
  //#define NANODLP_ALL_AXIS  // Enables "Z_move_comp" output on any axis move.
                              // Default behavior is limited to Z axis only.

 * Ethernet. Use M552 to enable and set the IP address.
  #define MAC_ADDRESS { 0xDE, 0xAD, 0xBE, 0xEF, 0xF0, 0x0D }  // A MAC address unique to your network

 * WiFi Support (Espressif ESP32 WiFi)
//#define WIFISUPPORT         // Marlin embedded WiFi managenent
//#define ESP3D_WIFISUPPORT   // ESP3D Library WiFi management (

  //#define WEBSUPPORT          // Start a webserver (which may include auto-discovery)
  //#define OTASUPPORT          // Support over-the-air firmware updates
  //#define WIFI_CUSTOM_COMMAND // Accept feature config commands (e.g., WiFi ESP3D) from the host

   * To set a default WiFi SSID / Password, create a file called Configuration_Secure.h with
   * the following defines, customized for your network. This specific file is excluded via
   * .gitignore to prevent it from accidentally leaking to the public.
   *   #define WIFI_SSID "WiFi SSID"
   *   #define WIFI_PWD  "WiFi Password"
  //#include "Configuration_Secure.h" // External file with WiFi SSID / Password

 * Průša Multi-Material Unit v2
 * Enable in Configuration.h

  // Serial port used for communication with MMU2.
  // For AVR enable the UART port used for the MMU. (e.g., mmuSerial)
  // For 32-bit boards check your HAL for available serial ports. (e.g., Serial2)
  #define MMU2_SERIAL_PORT 2
  #define MMU2_SERIAL mmuSerial

  // Use hardware reset for MMU if a pin is defined for it
  //#define MMU2_RST_PIN 23

  // Enable if the MMU2 has 12V stepper motors (MMU2 Firmware 1.0.2 and up)
  //#define MMU2_MODE_12V

  // G-code to execute when MMU2 F.I.N.D.A. probe detects filament runout

  // Add an LCD menu for MMU2
  //#define MMU2_MENUS
    // Settings for filament load / unload from the LCD menu.
    // This is for Průša MK3-style extruders. Customize for your hardware.
      {  7.2, 1145 }, \
      { 14.4,  871 }, \
      { 36.0, 1393 }, \
      { 14.4,  871 }, \
      { 50.0,  198 }

      {   1.0, 1000 }, \
      {   1.0, 1500 }, \
      {   2.0, 2000 }, \
      {   1.5, 3000 }, \
      {   2.5, 4000 }, \
      { -15.0, 5000 }, \
      { -14.0, 1200 }, \
      {  -6.0,  600 }, \
      {  10.0,  700 }, \
      { -10.0,  400 }, \
      { -50.0, 2000 }

   * MMU Extruder Sensor
   * Support for a Průša (or other) IR Sensor to detect filament near the extruder
   * and make loading more reliable. Suitable for an extruder equipped with a filament
   * sensor less than 38mm from the gears.
   * During loading the extruder will stop when the sensor is triggered, then do a last
   * move up to the gears. If no filament is detected, the MMU2 can make some more attempts.
   * If all attempts fail, a filament runout will be triggered.
    #define MMU_LOADING_ATTEMPTS_NR 5 // max. number of attempts to load filament if first load fail

   * Using a sensor like the MMU2S
   * This mode requires a MK3S extruder with a sensor at the extruder idler, like the MMU2S.
   * See, step 11
  //#define PRUSA_MMU2_S_MODE
    #define MMU2_C0_RETRY   5             // Number of retries (total time = timeout*retries)

    #define MMU2_CAN_LOAD_FEEDRATE 800    // (mm/min)
    #define MMU2_CAN_LOAD_SEQUENCE \
      {  0.1, MMU2_CAN_LOAD_FEEDRATE }, \
      {  60.0, MMU2_CAN_LOAD_FEEDRATE }, \
      { -52.0, MMU2_CAN_LOAD_FEEDRATE }

    #define MMU2_CAN_LOAD_RETRACT   6.0   // (mm) Keep under the distance between Load Sequence values
    #define MMU2_CAN_LOAD_DEVIATION 0.8   // (mm) Acceptable deviation

    #define MMU2_CAN_LOAD_INCREMENT 0.2   // (mm) To reuse within MMU2 module


  //#define MMU2_DEBUG  // Write debug info to serial output

#endif // PRUSA_MMU2

 * Advanced Print Counter settings
  // Activate up to 3 service interval watchdogs
  //#define SERVICE_NAME_1      "Service S"
  //#define SERVICE_INTERVAL_1  100 // print hours
  //#define SERVICE_NAME_2      "Service L"
  //#define SERVICE_INTERVAL_2  200 // print hours
  //#define SERVICE_NAME_3      "Service 3"
  //#define SERVICE_INTERVAL_3    1 // print hours

// @section develop

// M100 Free Memory Watcher to debug memory usage

// M42 - Set pin states

// M43 - display pin status, toggle pins, watch pins, watch endstops & toggle LED, test servo probe

// Enable Marlin dev mode which adds some special commands

Active Member
Joined: 1 month ago
Posts: 16
28/10/2020 2:25 pm  

Gonna give the above configuration a shot and see what happens. I will report back. Hope it gets through moderation...maybe I should pastebin them too....

Active Member
Joined: 1 month ago
Posts: 16
28/10/2020 2:35 pm  

Time limit expired to edit post - sigh


configuration.h -

configuration_adv.h -

Active Member
Joined: 1 month ago
Posts: 16
29/10/2020 10:51 am  

So I finally got it to print with the above configuration but it starts a couple MM above the bed and the z offset wont adjust it lol - I am about ready to go back to the old creality silent board. I always say people do too much to their printers and here I went and tried to go 32-bit *sigh*


Active Member
Joined: 1 month ago
Posts: 16
29/10/2020 2:17 pm  

More updates - this thread is going to be really long LOL

I found out the z offset LIVE is not working. I can change the z offset but have to do it, save it and then reprint my test file - This is in MARLIN mode on the tft35.

Main reason I am using MARLIN mode on the tft35 is because I get a bunch of errors in touch mode and I still have not been able to get anything to print in touch mode! It is so weird as I can print the file perfect in MARLIN mode but it just sits there extruding filament in touch screen mode.

Filament sensor is hooked up but I have turned it off in the touch menu settings for now. I wanted to try and get it printing properly first so now I am going to see if I can get that beast working.

Still really curious about the config files above and whether they are actually correct or not.

Active Member
Joined: 1 month ago
Posts: 16
29/10/2020 6:10 pm  

Another minute, another post lol.

Ok so I think I figured this out. Still need to run some tests but it seems the filament runout sensor will not work in BOTH marlin and touch mode. Hook to the motherboard and it works in marlin, hook to the tft35 and it works in touch mode - HOW STUPID IS THIS? I hope BigTreeTech reads this as this is the most insane thing I have heard since you hook everything to the motherboard (bltouch anyone) and it can be controlled in touch mode so why not THEIR OWN device? *sigh*

I am printing right now in touch mode after figuring this little tidbit out and turning off the filament sensor in touch mode. Printing a bracket for the filament runout sensor ROFLMAO I think I have gone insane.

Member Admin
Joined: 2 years ago
Posts: 47
30/10/2020 12:52 am  


Okay, I am a little confused now. I think you have to hook the filament runout sensor to the pins that BTT have defined in their pin definitions.

Also, I have heard a lot of people having issues with the touch and marlin mode both on one screen. You have to hook both sets of wires up to the motherboard, and enable it in the config. I have also heard about issues with the touch mode and marlin mode with filament sensors. See the reply on this subreddit for other person having that issue, maybe reply to them?


Most of your changes look good, you may need a few more. Also make sure you are wired up to PC15 + GND on the board. Below are the changes required for the Filament Runout sensor:

Filament Runout Sensor/Detection and Filament Change

E0-STOP (PC15)

    • (Length from the extruder gear to the nozzle + 10)
    • (Change it to your retraction speed)
    • (Change it to your retraction length)
    • (Length from the extruder gear to the nozzle OR set it to 0 for manual filament extraction)
    • (This needs to be less than or equal to EXTRUDE_MAXLENGTH)
    • (Length from the extruder gear to the nozzle OR set it to 0 for manual filament insertion)
    • (This needs to be less than or equal to EXTRUDE_MAXLENGTH)
    • (10 might be too much/annoying, if so, lower it to your liking)
    • (Adds M701/M702 Load/Unload G-code, and Load/Unload in the LCD Prepare menu.)

Business IT Solutions -
Plastic Process Engineering

Active Member
Joined: 1 month ago
Posts: 16
30/10/2020 2:02 pm  

Yes I have it wired to the E0-STOP on the mainboard. Maybe i was confusing myself as I thought some were saying the sensor could be hooked direct to the tft35 to use touch mode OR hooked to the motherboard to use in marlin mode. My brain is going buggy from all this 🙂

One other problem I found is it has the Z steps at 800 while mine is the original Ender 5 so I had to change to 400mm and now I have to redo the z offset and it is a pain in the butt because the live changing doesnt work 🙁

I am going to go through my config file and see about the ones you listed. I still have not even tried the runout sensor, I just have it attached but calibrating comes first.

Page 1 / 2